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Motivation

• Since Koenker and Bassett (1978), quantile regression has been widely used for policy
evaluation.

• Yet many real-world policy objectives are inherently multidimensional.
• The UN Sustainable Development Goals call for reducing inequality “within and among

countries.”
• The EU Cohesion Policy aims to foster convergence across regions; yet the within-region

component cannot be ignored.
• Equality-of-opportunity principles emphasize compensating for differences due to

circumstances while respecting differences due to effort.
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Motivation

• The relevance of both dimensions is also reflected in the applied literature, which
generally examines heterogeneity along a single dimension.

• Place-based policies have been shown to:
• stimulate local growth and employment in lagging regions (Becker et al., 2010; Busso et al.,

2013; Ehrlich and Seidel, 2018),
• but also increase within-region inequality (Lang et al., 2023; Albanese et al., 2023).

• → The two dimensions are interdependent: policies may improve outcomes along one
dimension while worsening them along the other.

• To capture these trade-offs, we have to model both dimensions together.

This paper suggests a method to simultaneously study distributional effects and
inequalities within and between groups.
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Why Modeling Two-Dimensional Inequality is Challenging

1 Plausible assumptions only yield partial orderings of groups.
• A region can display high mobility for some parts of the parental income distribution but low

mobility for others (Chetty and Hendren, 2018a,b).
• Swiss regions.

Comparisons are incomplete without additional normative structure. Evaluating
inequality across multiple dimensions requires assumptions about how society trades off
improvements in one dimension against deteriorations in another PLACEHOLDER
PLACEHOLDER.
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Example - Yearly Income across Regions

• Researchers tackle this difficulty by focusing on the group mean or median outcome
1 Compare average income across regions.
2 Compare median income across regions.
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Example - Yearly Income across Regions

• Researchers tackle this difficulty by focusing on the group mean or median outcome

1 Compare average income across regions.
2 Compare median income across regions.

• Limitations: Both measures impose strong assumptions on the welfare function

1 Averages ignore the distributional shape.
2 Median solely reflects the heterogeneity at one point of the distribution, potentially

overlooking the labor market situation of a considerable portion of workers.

• Solution: analyze between heterogeneity at different points of the within distribution
using a two-level quantile function.
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Example - Yearly Income across Regions
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Example - Yearly Income across Regions

p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60p60

40,000

80,000

120,000

160,000

0 20 40 60 80

Regions

S
w
is
s
F
ra
n
cs

Data: Swiss Federal Statistical Office. Regions are defined by 2-digit ZIP codes. obs = 4.2 million. Data

Martina Pons Quantile on Quantiles November 7th 2025 6 / 30



Introduction Outcome & Welfare Quantile Model & Estimator Asymptotics Empirical Application Conclusion

Example - Yearly Income across Regions



40,000

80,000

120,000

160,000

0 20 40 60 80

Regions

S
w
is
s
F
ra
n
cs

Data: Swiss Federal Statistical Office. Regions are defined by 2-digit ZIP codes. obs = 4.2 million. Data

Martina Pons Quantile on Quantiles November 7th 2025 6 / 30



Introduction Outcome & Welfare Quantile Model & Estimator Asymptotics Empirical Application Conclusion

Example - Yearly Income across Regions



40,000

80,000

120,000

160,000

0 20 40 60 80

Regions

S
w
is
s
F
ra
n
cs

Data: Swiss Federal Statistical Office. Regions are defined by 2-digit ZIP codes. obs = 4.2 million. Data

Martina Pons Quantile on Quantiles November 7th 2025 6 / 30



Introduction Outcome & Welfare Quantile Model & Estimator Asymptotics Empirical Application Conclusion

Example - Yearly Income across Regions



40,000

80,000

120,000

160,000

0 20 40 60 80

Regions

S
w
is
s
F
ra
n
cs

Data: Swiss Federal Statistical Office. Regions are defined by 2-digit ZIP codes. obs = 4.2 million. Data

Martina Pons Quantile on Quantiles November 7th 2025 6 / 30



Introduction Outcome & Welfare Quantile Model & Estimator Asymptotics Empirical Application Conclusion

Two-Dimensional Quantile Function Data
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Why Modeling Two-Dimensional Inequality is Challenging

1 Plausible assumptions only yield partial orderings of groups.
• A region can display high mobility for some parts of the parental income distribution but low

mobility for others (Chetty and Hendren, 2018a,b).
• Swiss Regions example.

2 Comparisons are incomplete without additional normative structure.
• Evaluating inequality across multiple dimensions requires assumptions about how society

trades off improvements in one dimension against deteriorations in another (Atkinson and
Bourguignon, 1987). More
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This paper...

Suggests a method to simultaneously study distributional effects within and between
groups.
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Contribution

1 Construct an outcome model that captures the complete distributional structure and
allows for unrestricted heterogeneity across groups.

• Outcomes are summarized by a two-dimensional quantile function reflecting within- and
between-group heterogeneity.

2 Introduce a flexible and tractable welfare criterion.
• Generalized social marginal welfare weights (Saez and Stantcheva, 2016) explicitly model

how society trades off between within- and between-group inequality.
• The two-dimensional quantile function is the unique minimal sufficient statistic for welfare

comparison within a broad class of social welfare criteria.

3 Propose a two-step quantile regression estimator with within-group regressions in the
first stage and between-group regressions in the second stage, and derive uniform
asymptotic results.
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Today’s Presentation

• Literature Review

• Outcome and Welfare Model

• Quantile Model and Estimator

• Asymptotic Results

• Empirical Application
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Related Econometrics Literature

• Within Distribution and Quantile Panel Data Models (Galvao and Wang, 2015;
Chetverikov, Larsen, and Palmer, 2016; Melly and Pons, 2025).

• Model also the between distribution. More on Melly and Pons (2024)

• Multidimensional heterogeneity (Arellano and Bonhomme, 2016; Frumento, Bottai, and
Fernández-Val, 2021; Liu, 2024; Fernández-Val, Gao, Liao, and Vella, 2022).

• Allow the effect of individual-level and group-level variables to vary across both dimensions.

• Quantile regression with generated dependent variables/regressors (Chen et al., 2003; Ma
and Koenker, 2006; Bhattacharya, 2020; Chen et al., 2021).

• Provide uniform asymptotic results for the entire quantile regression process.
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An Outcome Model

Let j = 1, . . . ,m be the groups and i = 1, . . . , n be the individuals.

Let each individual’s outcome be
yij = q(uij , vj),

• uij : within-group rank

• vj : is a vector containing group characteristics or circumstances.

Goal: construct a bivariate function.

• Within dimension: uij |vj ∼ U(0, 1), and impose strict monotonicity of q(·, vj). Yields a
group-level quantile function q(u, vj).

• Between dimensions: A scalar vj would not work!
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A Naive Model

Consider a naive version of the model

yij = q(uij , vj),

where q(·) is also strictly increasing in scalar vj .

Take two groups j = {h, l} with vh > vl , then strict monotonicity w.r.t. vj implies

q(vh, u) > q(vl , u), for all u ∈ (0, 1)

→ Groups can be ordered unambiguously.
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One-dimensional vj
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Why a Scalar vj Would Not Work
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Two-dimensional vj
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Outcome Model

Let vj be a vector.

Even if vj is multidimensional, after fixing u we can find a scalar valued function vj(u) such
that

q(u, vj) = q(u, vj(u)).

• This reparameterization imposes no restriction on the model.

• Simply maps multidimensional vj into a single index.

Normalize vj(u) ∼ U(0, 1) and assume q(·, ·) is increasing in both arguments.
Result: q(u, v) summarizes the entire joint distribution: for each u, it records how the uth
group-specific quantiles vary across groups through the dependency on v .
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Social Welfare

Welfare is written in terms of marginal social welfare weights (Saez and Stantcheva, 2016):

W =

∫ 1

0

∫ 1

0
w(u, v) q(u, v) du dv ,

where w(u, v) ≥ 0 denotes the social marginal welfare weight assigned to the individual at
within-group rank u and group rank v .

• Welfare is a weighted average of the outcomes with weights depending on both rank
variables.

• Weights are typically decreasing in both u and v
• Reflects concern for inequality within and between groups.

• Weights are not necessarily decreasing in the outcome level itself
• Society may not view all inequalities as equally problematic.
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Social Welfare

Many functional forms for w(u, v) are possible, each reflecting different trade-offs and areas of
focus.

Examples:

• Two-dimensional Gini Social Welfare Function more

• Equality of Opportunity (Roemer, 1998). more

• Utilitarian more

• (unconditional) rank-dependent welfare function. more

q(u, v) is the unique minimal sufficient statistic for welfare comparison within a broad class of
social welfare criteria. Formal Result

q(u, v) as the empirical primitive: once it is known, any welfare evaluation can be computed.
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Distributional Policy Evaluation

Consider a policy indexed by D ∈ {0, 1}. Assuming that the potential outcome surfaces
qd(u, v) are identified, the welfare impact of the policy is

∆W =

∫ 1

0

∫ 1

0
w(u, v) [q1(u, v)− q0(u, v)] du dv .

Hence, this provides a complete statistic for assessing how policies affect welfare across
multiple dimensions of heterogeneity.
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Quantile Model

Generalize the model to include covariates:

yij = q(xij , vj , uij)

= x ′ijβ(uij , vj) + α(uij , vj)

• xij : vector of covariates

• α(uij , vj): intercept.

Normalize

uij |xij , vj ∼ U(0, 1)

vj(u)|xij ∼ U(0, 1), for each u ∈ (0, 1)
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Two-Dimensional Quantile Function

Conditional on xij and vj , q(xij , vj , uij) is strictly monotonic with respect to uij so that

Q(u, yij |xij , vj) =q(xij , vj , u)

=x ′1ijβ(u, vj) + α(u, vj)

defines the u-conditional quantile function of yij conditional on xij , and vj .

By the same argument, the v -conditional quantile function Q(u, yij | xij , vj) is defined by:

Q(v ,Q(u, yij |x1ij , vj)|xij) = q(xij , v , u)

= x ′ijβ(u, v) + α(u, v).
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Interpretation of the coefficients

• β(u, v) tells how the (u, v)-conditional quantile function responds to a change in xij by
one unit.

• β(0.5, v) gives the effect of xij on the conditional quantile function of group medians,
with groups with the highest medians positioned at the top and those with the lowest
medians at the bottom of the distribution.
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Estimator
1 First stage: group-by-group quantile regression of the outcome on xij for quantiles u. For

each group j and quantile u:

β̂j(u) ≡
(
β̂1,j(u), β̂2,j(u)

′
)′

= argmin
(b1,b2)∈Rdim(x)+1

1

n

n∑
i=1

ρu(yij − b1 − x ′ijb2),

where ρu(x) = (u − 1{x < 0})x for x ∈ R is the check function.

Save the fitted values
for each quantile and each group j .

2 Second stage: for each quantile u regress the first-stage fitted values on xij using
quantile regression for each quantile v :

δ̂(β̂(u), v) = argmin
(a,b)∈Rdim(x)+1

1

mn

m∑
j=1

n∑
i=1

ρv (ŷij(u)− x ′ijb − a),

where δ = (α, β′)′ and ŷij(u) = β̂1,j(u) + x ′ij β̂2,j(u).
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Estimator - Example

• m = 100 =⇒ 100 groups

• quantile of interest: {0.1, 0.2, . . . , 0.9} =⇒ 9 quantiles of interest.

1 First stage: 9 group-by-group quantile regression of the yij on xij . (9 × 100 = 900 first
step regressions).
Obtain 9 vectors of fitted values.

2 Second stage: for each quantile u regress the first-stage fitted values (9 vectors) on xij
using quantile regression for each decile {0.1, 0.2, . . . , 0.9}. (9 × 9 = 81 second step
regressions)

Computing time
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Asymptotics

• Show uniform consistency and weak convergence of the entire quantile regression process.

• Asymptotic framework where n and m → ∞.

• Suggest testing procedure to test for uniform hypotheses.

Challenges:

• Non-smooth quantile regression objective function.

• Generated dependent variable.

• Dimension of the first stage increases with the number of groups.

• Different rate of convergence of first step estimator.

Use results in Chen, Linton, and Van Keilegom (2003); Angrist, Chernozhukov, and
Fernández-Val (2006); Volgushev, Chao, and Cheng (2019); Galvao, Gu, and Volgushev
(2020).
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Asymptotic Distribution
Let T be a compact subset of (0, 1). Show that uniformly in τ = (u, v) ∈ T × T ,

√
m
(
δ̂(β̂, τ)− δ0(β0, τ)

)
=− Γ1(δ0, β0, τ)

−1√m

 1

m

m∑
j=1

Γ̄2j(δ0, β0, τ)[β̂j(u)− βj ,0(u)] +Mmn(δ0, β0, τ)


+ op(1)︸ ︷︷ ︸

negligible

1 In blue: first-stage error

2 In yellow: second-stage noise

The first-stage quantile regression bias is of order 1/
√
n =⇒ the number of observations per

group must diverge to infinity.
more
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Asymptotic Distribution
If

√
m log n
n → 0 and other assumptions are satisfied more

First stage error:

sup
τ∈T ×T

∥∥∥∥ 1

m

m∑
j=1

Γ̄2j(δ0, β0, τ)
(
β̂j(u)− βj ,0(u)

)∥∥∥∥ = op

(
1√
m

)
, (1)

Second stage noise:
√
m (Mmn(δ0, β0, ·))⇝ G(·), in ℓ∞(T × T ),

where G is a mean-zero Gaussian process with a uniformly continuous sample path and
covariance function Ω2(τ, τ

′) = (min(v , v ′)− vv ′)E[xijx ′ij ].

Hence, √
m
(
δ̂(β̂, ·)− δ0(β0, ·)

)
⇝ Γ−1

1 (·)G(·) in ℓ∞(T × T ),

with Γ1 = Γ1(δ0, β0, τ). Degenerate Distribution Inference
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Inference

• I suggest a clustered bootstrap procedure, where entire groups are resampled with
replacement.

• First stage is unaffected; hence, fitted values can be resampled.

• I prove the validity of the bootstrap.
• Functional inference:

• Kolmogorov-Smirnov and Cramér-von-Mises Tests for homogeneity over (u, v). Critical
values are estimated using bootstrap. More on KS and CvM Tests

• Functional confidence band can be constructed by inverting the acceptance region of the
Kolmogorov-Smirnov test statistic (Chernozhukov et al., 2013). More functional Confidence Intervals
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Empirical Application

• Build on McKenzie and Puerto (2021).

• Estimate the impact of business training on the outcomes of female-owned businesses.

• Sample: 2,922 female-owned businesses operating in 116 different rural markets in Kenya.
• Two-stage randomization:

1 market-level randomization (markets are assigned to treatment or control markets).
2 individual-level randomization (firms in the treatment markets are randomly assigned to

training).

• Estimate distributional effects both within and between markets.

• Outcome variable: Income from Work.
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Empirical Application

Specification:
yij = β1(uij , vj) · Dij + β2(uij , vj) · Sij + α(uij , vj),

• yij : outcome of firm i operating in market j .

• Dij : treatment indicator.

• Sij binary variable that accounts for potential spillover effects ( = 1 for individuals in the
treatment markets that are assigned to the control group).
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Results - Income from Work More Rank Corr. H0 : Effect Homogeneity Computing Time Welfare
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1,000 Kenyan Shilling = 7.74 USD
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Results - Welfare Gain Under Different Weighting Schemes

Realized outcome vs. counterfactual scenario without treatment intervention.

W =

∫ 1

0

∫ 1

0
q(u, v) · w(u, v)dvdu,

where w(u, v) = 2(1− ωu − (1− ω)v), with ω ∈ {0.2, 0.5, 0.8}.

Weighting Scheme Welfare Gain (%)

ω = 0.2 11.53
ω = 0.5 13.14
ω = 0.8 15.16
Utilitarian (w = 1) 15.33

Back
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Conclusion

• Distributional treatment effects are particularly interesting when analyzing treatment
effect heterogeneity.

• Heterogeneity manifests itself across various dimensions.
• This paper suggests a method to simultaneously study distributional effects within and
between groups while remaining agnostic about social welfare function.

• Allows us to consider trade-offs between different components of inequality.

• Ranking groups is a nontrivial task without assuming a welfare function.

• Monte Carlo simulations show good finite sample performance. Simulations

FAQ
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Example I - Income heterogeneity within and between regions

• Groups: 83 Swiss regions (2-digit zip code)

• Data: Administrative data on the universe of Swiss residents

• Restrict to individuals aged 29 to 64 (4.2 million observations)

back
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Rank Correlation - Income from Work

Table: Correlation of Ranks over u

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2 1
0.3 0.74 1
0.4 0.65 0.87 1
0.5 0.53 0.76 0.85 1
0.6 0.49 0.66 0.72 0.82 1

0.7 0.42 0.6 0.66 0.69 0.83 1
0.8 0.36 0.51 0.58 0.62 0.77 0.88 1
0.9 0.32 0.44 0.42 0.47 0.59 0.6 0.69 1

Note:
The table shows the correlation matrix of the ranks at differ-
ent values of u.

Back
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Additional Results - Sales Back
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Additional Results - Profits Back
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Additional Results - Income from Work Back
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Test of the H0 of Homogeneous Effects Homogeneity

Table: P-Values of Cramér-von Mises and Kolmogorov-Smirnov Tests

Income Profits Sales

Cramér-von Mises 0.024 0.027 0.024
Kolmogorov-Smirnov 0.006 0.009 0.012

Note:
The table shows the p-values of the Cramér-von
Mises and Kolmogorov-Smirnov tests for the null
hypothesis that the coefficients are homogeneous
over both dimensions. The test is performed with
the parametric bootstrap with 1000 replications.

Back
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Why Modeling Two-Dimensional Inequality is Challenging
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Minimal Sufficienty of q(u, v) I

Definition (Class of welfare functionals)

Let W = L1+
(
(0, 1)2

)
denote the set of nonnegative integrable weight functions on (0, 1)2.

Each w ∈ W defines a welfare functional as in Equation (14), for any measurable
q : (0, 1)2 → R such that Ww (q) <∞. Two outcome surfaces q1, q2 are W-equivalent if
Ww (q1) = Ww (q2) for all w ∈ W.

Back
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Minimal Sufficienty of q(u, v) II

Theorem

Let W be as in the Definition. Then:

i Sufficiency. If q1 = q2 almost everywhere, then Ww (q1) = Ww (q2) for all w ∈ W.
Hence, all welfare comparisons in W depend only on q(u, v).

ii Identification completeness. If q1 ̸= q2 on a subset of (0, 1)2 with positive measure,
there exists w ∈ W such that Ww (q1) ̸= Ww (q2); equivalently,

∀w ∈ W,

∫
w(u, v)

[
q1(u, v)− q2(u, v)

]
du dv = 0 ⇐⇒ q1 = q2 a.e.

iii Uniqueness. Any other statistic T (·) that is sufficient for all welfare criteria in W must
coincide almost everywhere with a measurable transformation of q(u, v); that is, there
exists a measurable function ϕ such that T = ϕ(q(u, v)) a.e.
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Utilitarian Welfare Function

Equal weights across all individuals:
w(u, v) = 1.

• Welfare reduces to the mean outcome: W = E [Y ].

• Society is indifferent to inequality.

Back to overview
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Rank-Dependent Welfare Function

Weights depend only on unconditional ranks:

w(u, v) = w̃(FY (q(u, v))).

• Standard welfarist form: W =
∫ 1
0 w̃(θ)q(θ)dθ.

• Ignores within/between dimensions. Only the overall rank matters.

Back to overview
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Two-Dimensional Gini Welfare Function

Weights decay linearly in both within- and between-group ranks:

w(u, v) = 2[1− ωu − (1− ω)v ], ω ∈ [0, 1].

• ω controls the trade-off between within- and between-group inequality.

• ω = 1: welfare reduces to a function of the Gini index in the average group:
W = E [y ](1− IGini ).

Back to overview
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Equality of Opportunity

Weights focus on compensating for differences in circumstances:

w(u, v) = w(v), w ′(v) ≤ 0.

• Society compensates across v (circumstances) but not across u (effort).

• Roemer (1998): all weight on the worst circumstance w(v) = limε↓0
1{0≤v≤ε}

ε .

Back to overview
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Optimal Treatment Assignment

• Two-dimensional quantile treatment effects can be used to optimally assign groups or
individuals to treatment.

• Policymaker decides whom to treat in a given target population after observing data
from a sample population by maximizing a rank-dependent social welfare function (see,
e.g., Kitagawa and Tetenov, 2021).

• Point of departure:
• Kitagawa and Tetenov (2021) assigns treatment based on observable covariates. Baseline

outcomes are not always available.
• Kaji and Cao (2023) considers one-dimensional heterogeneity.

• Goal: select a treatment rule that assigns individuals depending on their ranks (uij , vj).

• With the structural model, individual treatment effects are identified.

• Exploit treatment effect heterogeneity within and between groups to allocate the
treatment more efficiently.
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Optimal Treatment Assignment

• Welfare under treatment rule G depends on the distribution of the outcome yij under the
treatment rule:

yij = 1{(uij , vj) ∈ G}yij(1) + 1{(uij , vj) /∈ G}yij(0),

and the optimal treatment rule solves

G ∗ ∈ argmax
G∈G

W (G ). (2)

• Summing up the welfare weights of each individual in a group provides a unified and
welfare-based measure of group rank or priority.

back to policy evaluation
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Asymptotics - Intuition
If the first stage parameter vector β0(u) was known, the true parameter vector δ0(β0, τ) of the
second stage quantile regression uniquely satisfies:

E[mij(δ0, β0, τ)] = 0 (3)

with mij(δ, β, τ) = x ′ij [v − 1(x̃ ′ijβj(u) ≤ x ′ijδ(β(u), v))].

Let Mmn(δ̂, β̂, τ) =
1
mn

∑m
j=1

∑n
i=1mij(δ̂, β̂, τ).

1 Show that ||Mmn(δ̂, β̂, τ)]− L(δ̂)|| ≤ op(m
−1/2), for some linear function L(δ).

2 Let δ̄ be the minimizer of L(δ) where

√
m
(
δ̄ − δ0

)
= −Γ1(δ0, β0)

−1√m

 1

m

m∑
j=1

Γ̄2j(δ0, β0)[β̂j − βj ,0] +Mmn(δ0, β0)


3 Show that

√
m
(
δ̂(β̂)− δ̄

)
= op(1).

back
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Assumptions I
1 Sampling – (i) The processes {(yij , xij) : i = 1, . . . , n} are i.i.d. across j . (ii) For each j ,

the observations (yij , xij) are i.i.d. across i .

2 Covariates – (i) For all j = 1, . . . ,m and all i = 1, . . . , n, ∥xij∥ ≤ C almost surely. (ii)
The eigenvalues of Ei |j [x̃ij x̃

′
ij ] and E[xijx ′ij ] are bounded away from zero and infinity

uniformly across j .

3 Conditional distribution I– The conditional distribution Fyij |x1ij ,vj (y |x , v) is twice
differentiable w.r.t. y, with the corresponding derivatives fyij |x1ij ,vj (y |x , v) and
f ′yij |x1ij ,vj (y |x , v). Further, assume that

f max
y := sup

j
sup

y∈R, x∈X1

|fyij |x1ij ,vj (y |x , v)| <∞,

and
f̄ ′y := sup

j
sup

y∈R, x∈X1

|f ′yij |x1ij ,vj (y |x , v)| <∞.

where X1 is the support of x1ij
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Assumptions II
4 Bounded density I – There exists a constant f min

y < f max
y such that

0 < fmin ≤ inf
j

inf
u∈T

inf
x∈X1

fyij |x1ij ,vj (Q(u, yij |xij , vj)|x , v).

5 Group level heterogeneity– The conditional distribution FQ(u,yij |xij ,vj )|xij (q|x) is twice
continuously differentiable w.r.t. q, with the corresponding derivatives fQ(u,yij |xij ,vj )|xij (q|x)
and f ′Q(u,yij |xij ,vj )|xij (q|x). Further, assume that

f max
Q := sup

u∈T , q∈R, x∈X
|fQ(u,yij |xij ,vj )|xij (q|x)| <∞

and

f̄ ′Q := sup
u∈T , q∈R, x∈X

|f ′Q(u,yij |xij ,vj )|xij (q|x)| <∞.

where X is the support of xij .
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Assumptions III

6 Bounded density II – There exists a constant f min
Q < f max

Q such that

0 < fmin ≤ inf
u,v∈T ×T

inf
x∈X

fQ(u,yij |xij ,vj )|xij (x
′
ijδ0(τ)|x).

7 Compact parameter space – For all τ , βj ,0(u) ∈ int(Bj) and δ0(β0, τ) ∈ int(D), where
Bj and D are compact subsets of RK1+1 and RK , respectively.

8 Coefficients – For all u, u′ ∈ T and j = 1, . . . ,m, ∥βj(u)− βj(u
′)∥ ≤ C |u − u′|.

Further, for all τ, τ ′ ∈ T × T and ∥δ(τ)− δ(τ ′)∥ ≤ C |u − u′|+ ≤ C |v − v ′|.
9 Growth rates – As m → ∞, we have

1
logm
n → 0,

2
√
m log n
n → 0,

back
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Inference

• The asymptotic distribution is degenerate, if there is no group-level heterogeneity. More

• In similar settings (Liao and Yang, 2018; Lu and Su, 2023; Fernández-Val et al., 2022)
show that the procedure is uniformly valid in the rate of convergence. While Melly and
Pons (2025) shows similar results for clustered covariance matrix estimator.

• It is likely that the inference procedure suggested here is valid adaptively.

• However, it is not possible to use the same proof strategy (linearization used to prove the
results holds only under heterogeneity).

Back
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Kolmogorov–Smirnov

Consider the H0 : δk(τ) = δ̄k , ∀ u, v ∈ T × T .
Test statistic:

tKS = sup
τ∈T ×T

√(
δ̂k(τ)− δ̄k

)′
V̂k(τ)−1

(
δ̂k(τ)− δ̄k

)
,

with δ̄k =
∫
v

∫
u δ̂(u, v)dudv and where V̂k(τ) is a bootstrap estimate of the asymptotic

variance of δ̂k(τ).
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Kolmogorov–Smirnov

• To obtain the critical values, I follow Chernozhukov and Fernández-Val (2005) and use
the bootstrap to mimic the test statistic.

• To impose the null, I use the parametric bootstrap based on the estimated quantile
regression process.

• For each bootstrap iteration, construct the test statistic:

tKSb = sup
τ∈T ×T

√(
δ̂∗bk (τ)− δ̂∗bk

)′
V̂k(τ)−1

(
δ̂∗bk (τ)− δ̂∗bk

)
, (4)

where δ̂∗bk =
∫
v

∫
u δ̂

∗b(u, v)dudv .

• The critical values of a test with size α are the 1− α quantile of {tKSb : 1 ≤ b ≤ B}.
back
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Functional Confidence Intervals

Following Chernozhukov et al. (2013), it is possible to construct functional confidence intervals
that cover the entire function with a pre-specified rate by inverting the acceptance region of
the KS statistics

tKSb = sup
τ∈T ×T

√(
δ̂∗bk (τ)− δ̂k(τ)

)′
V̂k(τ)−1

(
δ̂∗bk (τ)− δ̂k(τ)

)
.

The (1− α) functional confidence bands for a coefficient δ̂k(τ) can be constructed by

δ̂k(τ)± t̂∗1−α ·
√
V̂k(τ),

where t̂∗1−α is the 1− α quantile of {tKSb : 1 ≤ b ≤ B}.
back
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Simulations
• Data generating process:

yij = 1 + x1ij + γ · x2j + ηj(1− 0.1 · x1ij − 0.1 · x2j) + νij(1 + 0.1 · x1ij + 0.1 · x2j)

with x1ij = 1 + hj + wij , where hj ∼ U[0, 1] and wij , x2j , ηj , νij are N(0, 1).

Let F be the standard normal cdf.
• β(u, v) = 1 + 0.1 · F−1(u)− 0.1 · F−1(v)
• γ(u, v) = 1 + 0.1 · F−1(u)− 0.1 · F−1(v).

• (m, n) = {(25, 25), (200, 25), (25, 200), (200, 200), (200, 400)}
• Set of quantiles {0.25, 0.5, 0.75}
• 2, 000 Monte Carlo simulations.

• 100 bootstrap repetitions.
back

Martina Pons Quantile on Quantiles November 7th 2025 30 / 30



References Descriptive Example Empirical Application Policy Evaluation Asymptotics Simulations Questions

Simulations - Bias and Standard Deviation I

β γ

u \ v 0.25 0.5 0.75 0.25 0.5 0.75

(m, n) = (25,25)
0.25 -0.023 0.004 0.034 -0.030 -0.006 0.018

(0.119) (0.110) (0.117) (0.243) (0.222) (0.239)
0.5 -0.021 -0.001 0.027 -0.029 -0.010 0.014

(0.114) (0.106) (0.111) (0.240) (0.219) (0.235)
0.75 -0.029 -0.005 0.024 -0.031 -0.012 0.014

(0.114) (0.112) (0.119) (0.246) (0.222) (0.236)

(m, n) = (25,200)
0.25 -0.010 0.000 0.007 -0.004 0.006 0.019

(0.071) (0.067) (0.072) (0.237) (0.215) (0.232)
0.5 -0.010 -0.002 0.005 -0.004 0.004 0.018

(0.067) (0.066) (0.070) (0.237) (0.215) (0.235)
0.75 -0.010 -0.004 0.006 -0.007 0.004 0.017

(0.070) (0.069) (0.072) (0.237) (0.217) (0.238)
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Simulations - Bias and Standard Deviation II

β γ

u \ v 0.25 0.5 0.75 0.25 0.5 0.75

(m, n) = (200,25)
0.25 -0.023 0.004 0.030 -0.018 0.003 0.022

(0.043) (0.040) (0.042) (0.082) (0.072) (0.078)
0.5 -0.024 -0.001 0.023 -0.018 0.001 0.019

(0.041) (0.037) (0.040) (0.078) (0.072) (0.077)
0.75 -0.032 -0.007 0.020 -0.020 -0.002 0.018

(0.043) (0.038) (0.042) (0.079) (0.072) (0.078)

(m, n) = (200,200)
0.25 -0.005 0.001 0.006 -0.004 0.001 0.003

(0.028) (0.026) (0.028) (0.076) (0.073) (0.079)
0.5 -0.005 0.000 0.006 -0.004 0.000 0.003

(0.028) (0.025) (0.028) (0.076) (0.073) (0.079)
0.75 -0.006 0.000 0.006 -0.005 0.001 0.002

(0.028) (0.026) (0.028) (0.077) (0.073) (0.079)
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Simulations - Bias and Standard Deviation III

β γ

u \ v 0.25 0.5 0.75 0.25 0.5 0.75

(m, n) = (200,200)
0.25 -0.005 0.001 0.006 -0.004 0.001 0.003

(0.028) (0.026) (0.028) (0.076) (0.073) (0.079)
0.5 -0.005 0.000 0.006 -0.004 0.000 0.003

(0.028) (0.025) (0.028) (0.076) (0.073) (0.079)
0.75 -0.006 0.000 0.006 -0.005 0.001 0.002

(0.028) (0.026) (0.028) (0.077) (0.073) (0.079)

(m, n) = (200,400)
0.25 -0.003 0.000 0.003 -0.004 -0.003 0.002

(0.026) (0.023) (0.026) (0.077) (0.073) (0.079)
0.5 -0.003 0.000 0.003 -0.004 -0.003 0.002

(0.025) (0.023) (0.025) (0.077) (0.073) (0.079)
0.75 -0.004 -0.001 0.003 -0.005 -0.004 0.002

(0.026) (0.024) (0.026) (0.077) (0.073) (0.079)
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Simulations - Standard Errors I

Table: Bootstrap Standard Errors relative to Standard Deviation

β γ

u \ v 0.25 0.5 0.75 0.25 0.5 0.75

(m, n) = (25,25)
0.25 1.180 1.146 1.200 1.148 1.098 1.261
0.5 1.191 1.133 1.242 1.190 1.115 1.327
0.75 1.213 1.119 1.230 1.167 1.107 1.357

(m, n) = (25,200)
0.25 1.321 1.231 1.401 1.275 1.138 1.649
0.5 1.381 1.229 1.457 1.332 1.138 1.720
0.75 1.358 1.199 1.443 1.352 1.126 1.724
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Simulations - Standard Errors II
Table: Bootstrap Standard Errors relative to Standard Deviation

β γ

u \ v 0.25 0.5 0.75 0.25 0.5 0.75

(m, n) = (200,25)
0.25 1.028 1.031 1.048 1.002 1.056 1.043
0.5 1.017 1.052 1.069 1.028 1.052 1.063
0.75 1.025 1.063 1.050 1.027 1.053 1.052

(m, n) = (200,200)
0.25 1.089 1.081 1.080 1.056 0.995 1.021
0.5 1.064 1.081 1.081 1.052 1.000 1.014
0.75 1.075 1.082 1.095 1.036 1.004 1.018

(m, n) = (200,400)
0.25 1.081 1.111 1.078 1.044 1.003 1.011
0.5 1.089 1.092 1.088 1.039 1.004 1.009
0.75 1.092 1.092 1.082 1.037 1.005 1.008
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Simulations - Coverage Probability I

Table: Coverage Probability of Bootstrap 95% Confidence Interval

β γ

u \ v 0.25 0.5 0.75 0.25 0.5 0.75

(m, n) = (25,25)
0.25 0.970 0.973 0.969 0.948 0.954 0.953
0.5 0.972 0.973 0.970 0.949 0.951 0.948
0.75 0.971 0.968 0.972 0.949 0.958 0.946

(m, n) = (25,200)
0.25 0.985 0.987 0.985 0.957 0.959 0.965
0.5 0.986 0.985 0.981 0.956 0.956 0.964
0.75 0.988 0.988 0.987 0.955 0.953 0.954
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Simulations - Coverage Probability II
Table: Coverage Probability of Bootstrap 95% Confidence Interval

β γ

u \ v 0.25 0.5 0.75 0.25 0.5 0.75

(m, n) = (200,25)
0.25 0.916 0.948 0.899 0.929 0.943 0.928
0.5 0.905 0.955 0.925 0.936 0.954 0.932
0.75 0.878 0.952 0.931 0.941 0.959 0.943

(m, n) = (200,200)
0.25 0.964 0.965 0.954 0.948 0.938 0.940
0.5 0.955 0.961 0.956 0.945 0.940 0.944
0.75 0.961 0.963 0.961 0.947 0.942 0.947

(m, n) = (200,400)
0.25 0.957 0.958 0.961 0.948 0.936 0.939
0.5 0.963 0.961 0.961 0.946 0.938 0.934
0.75 0.959 0.963 0.959 0.944 0.940 0.931
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Simulations - DGP for the KS and CvM Tests
Let

yij = 1 + x1ij + x2j + ηj(1− ψ(x1ij + x2j)) + νij(1 + ϕ(x1ij + x2j)),

with x1ij = 1 + hj + wij , where hj ∼ U[0, 1] and wij , x2j , ηj , νij are N(0, 1).

• ϕ regulate effect heterogeneity over u

• ψ regulate effect heterogeneity over v .

Test the null hypotheses that β(τ) = β̄ and that γ(τ) = γ̄.

• Simulations on the set of quantiles 0.1, 0.2, . . . , 0.9.

• Impose the null using the parametric bootstrap based on the estimated quantile regression
process.

• (m, n) = {(25, 25), (200, 25), (25, 200), (200, 200)}
• 1,000 Monte Carlo simulations.

• 100 bootstrap repetition.
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Simulations - Rejection Probability of the KS and CvM Tests

Table: Rejection Probability of the Kolmogorov-Smirnov Test

(ϕ, ψ) (0, 0) (0, 0.1) (0.1, 0) (0.1, 0.1) (0.2, 0.2)

H0 : γ(τ) = γ̄
(m, n) = (25,25) 0.007 0.005 0.007 0.009 0.034
(m, n) = (25,200) 0.015 0.013 0.020 0.032 0.173
(m, n) = (200,25) 0.026 0.209 0.251 0.469 0.996
(m, n) = (200,200) 0.046 0.307 0.397 0.826 1.000

H0 : β(τ) = β̄
(m, n) = (25,25) 0.026 0.108 0.101 0.156 0.537
(m, n) = (25,200) 0.056 0.536 0.548 0.885 1.000
(m, n) = (200,25) 0.026 0.767 0.822 0.970 1.000
(m, n) = (200,200) 0.057 1.000 1.000 1.000 1.000
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Simulations - Rejection Probability of the KS and CvM Tests

Table: Rejection Probability of the Cramér-von Mises Test

(ϕ, ψ) (0, 0) (0, 0.1) (0.1, 0) (0.1, 0.1) (0.2, 0.2)

H0 : γ(τ) = γ̄
(m, n) = (25,25) 0.014 0.026 0.022 0.027 0.165
(m, n) = (25,200) 0.023 0.030 0.035 0.047 0.381
(m, n) = (200,25) 0.044 0.381 0.414 0.789 1.000
(m, n) = (200,200) 0.061 0.446 0.430 0.895 1.000

H0 : β(τ) = β̄
(m, n) = (25,25) 0.038 0.223 0.231 0.373 0.921
(m, n) = (25,200) 0.068 0.728 0.844 0.988 1.000
(m, n) = (200,25) 0.048 0.937 0.995 1.000 1.000
(m, n) = (200,200) 0.056 1.000 1.000 1.000 1.000
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Simulations - Computing Time

2000 simulations.
100 bootstrap repetitions.
Set of quantile {0.25, 0.5, 0.75}.
AMD Ryzen Threadripper 3960X 24-Core Processor

(m, n) Computing Time

(25, 25) 18.70 sec
(25, 200) 32.70 sec
(200, 25) 1.30 min
(200, 200) 10.01 min
(200, 400) 32.16 min

back to FAQ Empirical Application Computing Time Back to Conclusion
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Questions

• Convergence Rate more

• Growth Condition more

• Degenerate Distribution more

• Smoothed Quantile Regression and Bias Correction more

• Link to Melly and Pons (2025) more

• Computing Time Empirical Application Simulations

• Endogenous treatment and instrumental variables more

• Quantile Crossing more

• Rank Invariance more
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Quantile Crossing

• Ensuring the monotonicity of the estimated two-level quantile functions across both
dimensions might require a rearrangement operation, as suggested in Chernozhukov et al.
(2009, 2010).

• Due to the nested structure of the problem, rearrangement along the u dimension should
be performed after the first stage.

• Monotonicity of the first stage in all groups guarantees that the second stage quantile
regression remains monotonic along the u dimension.

• Rearrangement along the v dimension can be implemented subsequent to the second
stage.

Back to FAQ
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Endogenous Treatment and Instrumental Variables

• The model in the paper assumes that the variation of xij is exogenous.

• If this is not the case, the estimator suggested here can be easily extended to
accommodate instrumental variables.

• Depending on which variables are assumed to be endogenous, either the second stage or
both stages could be estimated using an instrumental variable quantile regression
estimator (e.g., Chernozhukov and Hansen, 2005).

Back to FAQ
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Relation to Melly and Pons (2025)

• Propose a minimum distance approach to quantile panel data models where the unit
effects may be correlated with the covariates.

• The model and estimator are flexible and apply to:
• Classical panel data, tracking units over time,
• Grouped data, where individual-level data is available, but often the treatment vars are at

the group level.

• We suggest a general framework for quantile panel data models.

• New random effects quantile estimator, new Hausman test, new Hausman-Taylor quantile
estimator, new grouped (IV) quantile regression estimator.

• The asymptotic distribution of our estimator is non-standard, as the rate of convergence
of a coefficient depends on the presence of group-level heterogeneity and the variation
used to identify that coefficient. =⇒ We derive adaptive asymptotic results and
inference procedure.
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Relation to Melly and Pons (2025)
This paper focuses on simultaneously estimating the effect on the distribution of the outcome
within and between groups. In Melly and Pons (2025) the heterogeneity arises from the
individual rank variable uij and the focus is on the within distribution.

Starting from the two-dimensional quantile function and assuming that (xij) ⊥⊥ vj , we can
obtain the model in Melly and Pons (2025) by integrating over vj :

E [Q (u, yij |xij , vi ) |xij ] =x ′1ij

∫
β(u, v)dFV (v) + x ′2j

∫
γ(u, v)dFV (v)

+

∫
α(u, v)dFV (v)

=x ′ij β̄(u) + ᾱ(u).

They identify the average effects over groups at the u quantile of the within distribution.
Back to FAQ Back to Literature
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Computing Time - Empirical Application

• 17 quantiles: {0.1, 0.15, 0.2, . . . , 0.9}
• m = 116

• n ×m = 2922 (average group size = 25).

• Bootstrap standard errors (r = 1, 000).

Computing time: 2021 MacBook Pro with Apple M1 Pro Chip (8 cores): 2.21 minutes.

Back to FAQ Simulations Running Time Estimator Application Results Conclusion
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Degenerate Distribution

• In similar settings, Galvao et al. (2020), Melly and Pons (2025) show that without
group-level heterogeneity, the first stage error dominates, and the estimator convergences

at the 1/
√
mn rate (requirement: m(log n)2

n → 0).

• Under the stronger growth condition, it is possible to show that
√
mn 1

m

∑m
j=1 Γ̄2,j(δ0, β0, τ)

(
β̂j(u)− βj ,0(u)

)
d−→ N(0,Ω1(τ)).

• Intuitively, without heterogeneity between groups, the estimated group-level conditional
quantile functions are identical up to the first stage error, and the estimator should
converge at the faster 1/

√
mn rate.

• In this case, it is not possible to use that same proof strategy. The linearization used to
derive the asymptotic results relies on the presence of group-level heterogeneity.

• Simulations without group-level heterogeneity show that this is also the case with the
non-linear second-step estimator.

Back to Asymptotic FAQ More on Inference
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Convergence Rate
• The entire coefficient vector converges at the 1/

√
m rate despite mn observations being

used for the estimation.
• It is a consequence of modeling heterogeneities between groups:

• Imposing equality of β(u, v) over groups would allow to estimate this coefficient at the
1/
√
mn rate.

• Since β(u, v) is allowed to vary over groups through the dependency on v , between groups
variation is necessary for identification.

• Similarly, in the least squares case, it is always possible to estimate the coefficient on xij
at the 1/

√
mn rate by implementing a fixed effects estimator.

• However, this estimator only exploits the within-group variation and cannot identify
heterogeneities between groups.

• Ultimately, the between variation, which slows down the convergence rate, has to be used
to identify between-group heterogeneity.

Back to FAQ
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Growth Conditon

• Nonlinear panel data literature has shown that m/n → 0 is a sufficient condition to obtain
asymptotic normality of nonlinear panel data FE estimators.

• Galvao et al. (2020) show that unbiased asymptotic normality of panel data FE QR
estimator hold under m(log(n))2/n → 0 .

• Previous condition in the literature: m2log(m)(log(n))2/n → 0.

• These estimator converge at the
√
mn rate.

• My estimator converges at the
√
m rate. Hence, I only need m log(n)/n → 0.

Back to FAQ
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Smoothed Panel Data Quantile Regression and Bias Correction

• Galvao and Kato (2016) show that the smoothed FE estimator
√
mn(β̂ − β0)

d−→ N(bias,V ) if m/n → c.

• Bias corrected estimator is centered at zero under the same growth condition.

• Smoothed QR estimator requires stronger smoothness conditions on the distribution of
the outcome variable and the choice of a bandwidth that is arbitrary.

• This approach is not applicable in this setting as it assumes homogeneity of the
coefficients over groups.

• Franguridi, Gafarov, and Wüthrich (2024) derive an explicit formula for the bias of the
leading term of the expansion. However, implementation remains a major challenge.

Back to FAQ
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Rank Invariance

• With rank invariance, treatment effects of individuals at given points of the distribution
are identified.

• The model in this paper continues to identify well-defined parameters even if rank
invariance is not satisfied.

• Testing procedure for rank similarity (or rank invariance) have been proposed in the
literature (Dong and Shen, 2018; Frandsen and Lefgren, 2018; Kim and Park, 2022).

• Requirements: Binary treatment, multi-valued instrument or multiple IVs (Frandsen and
Lefgren, 2018).
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