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Abstract

We propose a minimum distance estimation approach to quantile panel data models
where the unit effects may be correlated with the covariates. The estimation method is com-
putationally straightforward to implement and fast. We first compute a quantile regression
within each individual and then apply GMM to the fitted values from the first stage. The
suggested estimators apply (i) to grouped data, where we observe data at the individual
level, but the treatment varies at the group level, and (ii) to classical panel data, where we
follow the same units over time. Depending on the variables assumed to be exogenous, this
approach provides quantile analogs of the classical least squares panel data estimators such
as the fixed effects, random effects, between, and Hausman-Taylor estimators. For grouped
(instrumental) quantile regression, we provide a more precise estimator than the existing
estimators. We establish the asymptotic properties of our estimators when both the num-
ber of units and observations per unit jointly diverge to infinity. We suggest an inference
procedure that automatically adapts to the (potentially) unknown rate of convergence of
the estimators. Monte Carlo simulations show that our estimator and inference procedure
also perform well in finite samples when the number of observations per unit is small. In
an empirical application, we find that the introduction of the food stamp program increased
the birth weights only at the bottom of the distribution.

1 Introduction

Quantile regression, as introduced by Koenker and Bassett (1978), is the method of choice

when we are interested in the effect of a policy on the distribution of an outcome. The quan-

tile treatment effect function provides more information than the average treatment effect; for

instance, it allows evaluating the impact of the treatment on inequality. When panel data are

available, new identification and estimation strategies become feasible. The researchers can

alleviate endogeneity concerns, for instance, by allowing for correlated group effects. They

can obtain more precise estimates, for example, by using a random-effects estimator; or they
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can exploit individual-level variables to identify the impact of group-level variables, e.g., with

the Hausman and Taylor (1981) estimator. In this paper, we propose a minimum distance

estimation approach to quantile panel data models, which provides quantile analogs of the clas-

sical least-squares panel data estimators such as the fixed effects, random effects, between, and

Hausman-Taylor estimators.

We use a general notation (i and j subscripts) and terminology (individuals and groups)

that is more common to group data, where individual-level data is available, and the treatment

varies at the group level. For instance, in Autor et al. (2013), the groups are commuting

zones in the United States while they are schools in Angrist and Lang (2004). In both cases, the

treatment varies only between groups, but individual data are needed to estimate the conditional

distribution of the outcome within each group. Our results also apply to classical panel data,

where the data follow the same individual over time. In this part of the literature, the j units

are the individuals, and the i units are the time periods. We discuss the application of our

results to this framework in Section 4.

In all cases, we perform the estimation in two stages. The first stage consists of group-level

quantile regressions using individual-level covariates at each quantile of interest. In the second

stage, the first stage fitted values are regressed on individual-level and group-level variables. If

these variables are potentially endogenous, an instrumental variable regression or, more gener-

ally, the generalized method of moment (GMM) estimator can be used. Thus, including external

or internal instruments in the second stage is straightforward. This estimator is simple to im-

plement, flexible, computationally fast, and can be used in various applied fields. While this

two-step procedure may sound unusual, Section 2.3 shows that it is numerically identical to the

standard estimators if we use least squares in the first stage and the appropriate instruments.

As a nonlinear estimator, first-stage quantile regression is subject to a bias that decreases as

the number of observations per group increases. Inference is justified in an asymptotic framework

where both the number of observations per group n, and the number of groups m diverge to

infinity.1 Recently, Galvao et al. (2020) have weakened the requirements on the relative rate

of divergence of m and n for asymptotic normality of fixed effects quantile estimators. Using

their results, we show that our estimator is asymptotically normal under the condition that

m(log n)2/n → 0. Under this condition and other assumptions, we show that our estimators are

asymptotically normally distributed and centered at zero. The requirement on the growth rate

of n relative to m can be weakened if only the coefficient vector on group-level regressors is of

interest. In this case, the milder condition that
√
m(log n)/n → 0 is sufficient for an unbiased

asymptotic distribution.

The asymptotic distribution of the estimator is non-standard because the speed of conver-

gence is not the same for all coefficients. The speed of convergence depends on the moment

1Large n asymptotic has been widely used in the quantile and nonlinear traditional panel data literature as
well as in the nonstationary and dynamic panel data literature. For seminal contributions, see Phillips and Moon
(1999), Hahn and Kuersteiner (2002), and Alvarez and Arellano (2003).
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conditions that are used to identify a parameter. More precisely, it depends on the interaction

between the instrument and the unobserved heterogeneity. We distinguish three cases. In the

first case, the moments exploit variation between groups, and there is group-level heterogeneity.

The coefficients of the variables that are identified by these moments converge at the
√
m rate

(the ‘slow’ coefficients). In the second case, the moments only exploit within variation. This

can happen if there is no group level heterogeneity or if the instrument is set to exploit only

the variation within groups as in a within regression. The coefficient of the variables identified

by these moments converges at the faster
√
mn rate (the ‘fast’ coefficients). The third case is

an intermediate case that could occur if, for example, the level of group-level heterogeneity is

small. In this special case, the rate of convergence is unknown and lies between
√
m and

√
mn.

The differential rate of convergence has several consequences for the first-order asymptotic dis-

tribution: (i) The fast and slow coefficients are first-order asymptotically independent. (ii) If

a coefficient is identified by both within and between variations, then the between variation is

first-order asymptotically useless. For instance, the random-effect estimator is asymptotically

equivalent to the fixed-effects estimator.2 (iii) The first-order asymptotic distribution of the

estimator of the slow coefficients is not affected by the first-stage estimation error. Using this

better approximation, we solve these three issues. This allows us to suggest a new quantile

random effects estimator that is more precise than the fixed effects estimator in finite samples.

We also improve the quality of the estimated standard errors by taking the first-stage estimation

error into account. Quite surprisingly, we find that clustering the standard errors in the second

stage automatically takes into account the first-stage error and provides an adaptive inference

procedure in the sense that it is uniformly valid in the rate of convergence of the moment condi-

tions and the estimator, including the intermediate case. Further, our inference does not require

estimating the density like in traditional quantile models.

This paper contributes to the literature on quantile panel data and IV models. A large

share of the literature focused on fixed effects models (see, for example, Canay, 2011; Galvao

and Kato, 2016; Gu and Volgushev, 2019). Koenker (2004) introduced a penalized quantile

fixed effects estimator that treated the individual heterogeneity as a pure location shift. Kato

et al. (2012) allow the group effects to depend on the quantile of interest and contribute to

the asymptotic theory of the estimator. Galvao and Wang (2015) suggest a two-step minimum

distance (MD) estimator as a computationally fast way to estimate fixed effects quantile panel

data model. Galvao and Poirier (2019) suggest using quantile regression as an estimator in

the presence of random effects. Our random effects estimator is different because we focus on

the conditional quantile function that also conditions on the group effect (see Remark 1 for a

discussion on conditional effects). In other words, we estimate a different parameter, and quantile

regression is not consistent for this parameter even if the random effects are not correlated with

the covariates.

2See Ahn and Moon (2014) for similar results for least-squares estimators.
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Our class of estimators nests the MD estimators of Chamberlain (1994) and Galvao and

Wang (2015) as special cases. We generalize the results in Chamberlain (1994) by including

individual-level regressors and allowing the number of groups to go to infinity.3 Galvao and

Wang (2015) are only interested in the effect of individual-level covariates and do not exploit

variation between individuals.4 In contrast, we aim to estimate the effect of both individual-level

and group-level regressors. Furthermore, we allow for both internal and external instruments.

Chetverikov et al. (2016) consider a quantile extension of the Hausman-Taylor model. They

focus on the effect of variables that vary only between groups and allow for instrumental vari-

ables for identification. The main difference compared to our setting is that, in the second stage,

we regress the fitted values on all variables while they regress the estimated intercept on the

group-level regressors. Since they use only the intercept in the second stage, their estimator is

not invariant to reparametrizations of the individual-level regressors. By keeping all the vari-

ables in the second stage, we can easily impose equality of the coefficients on the individual-level

regressors, which increases precision at a minimal cost from a computational perspective and

make the estimator invariant to reparametrization. Clearly, our estimator accommodates mod-

eling heterogeneous treatment effects by including interactions. Simulations using the same data

generating process as Chetverikov et al. (2016) show that our MD estimator has substantially

lower variance and MSE across all sample sizes considered. From a technical point of view, we

are able to weaken the growth rate of the number of observations per group n relative to the

number of groups m necessary to obtain unbiased asymptotic normality of the estimator of the

‘slow’ coefficient. We also contribute to this literature by deriving the limiting distribution of

the estimator of the ‘fast’ coefficients, which were not studied by Chetverikov et al. (2016).

As an empirical application, we build on the work of Almond et al. (2011) and estimate the

distributional effect of the food stamp program on birth weight. Following the Food Stamp Act,

the number of counties that implemented a food stamp program increased substantially in the

late 1960s and in the beginning of the 1970s. To apply our minimum distance estimator, we

define groups as county-trimester cells. Thus, the subscript j indexes a county-trimester cell,

while the subscript i defines an individual within this cell. We estimate the model separately

for black and white mothers, and we find that the food stamp program has a positive impact

on the lower tail of the birth weight distribution, mostly among blacks.

The remainder of the paper is structured as follows. Section 2 presents the model and the

estimator and briefly discusses equivalent methods to estimate average effects with panel data

models to motivate our two-step approach. Section 3 presents the asymptotic theory. Section

4 focuses more in detail on the estimation of traditional quantile panel data models, and we

3Chamberlain (1994) uses a different terminology because he considers cross-sectional regressions. He analyses
a quantile regression model with a finite number of combinations of values of the regressors. The number of cells
is thus finite, and the regressors are constant within each cell.

4Galvao and Wang (2015) consider a traditional panel data setting, thus, using their terminology, they focus
on estimating the effect of time-varying regressors
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present a generalization of the Hausman test for the random effects assumption. Section 5

discusses the grouped quantile regression model and compares our estimator to the grouped IV

quantile regression of Chetverikov et al. (2016). Monte Carlo simulations to analyze the finite

sample performance are included in Sections 4 and 5. In Section 6, in an empirical application,

we study the effect of the food stamp program on the distribution of birth weight. Section 7

concludes.

2 Model and Minimum Distance Estimator

2.1 Quantile Model

We want to learn the effects of the individual-level variables x1ij and the group-level variables

x2j on the distribution of an outcome yij . We observe these variables for the groups j = 1, . . . ,m

and individuals i = 1, . . . , n.5 For some quantile index 0 < τ < 1, we assume that

Q(τ, yij |x1ij , x2j , vj) = x′1ijβ(τ) + x′2jγ(τ) + α(τ, vj), (1)

where Q(τ, yij |x1ij , x2j , vj) is the τth conditional quantile function of the response variable yij for

individual i belonging to group j given the K1-vector of individual-level regressors x1ij , the K2-

vector of time invariant variables x2j , and an unobserved random vector vj of unrestricted and

unknown dimension. In total, there are K1 +K2 = K parameters to estimate. The parameters

β(τ), γ(τ) and the unobserved group heterogeneity α(τ, vj) can depend on the quantile index

τ . Depending on the setting, β(τ) or γ(τ) (or both) might be the parameters of interest. We

normalize E[α(τ, vj)] = 0, which is not restrictive because x2j includes a constant.

Remark 1 (Conditional versus unconditional effects). In contrast to the average effect,

the definition of a quantile treatment effect depends on the conditioning variables. In this paper,

we model the distribution of yij conditionally on the covariates and on the group effect α(τ, vj).

Thus, even if the group effects are independent of the regressors, we identify different coefficients

than those identified by quantile regression as introduced by Koenker and Bassett (1978) or by

instrumental variable quantile regression as introduced by Chernozhukov and Hansen (2005).

The following example illustrates the difference between these parameters. Consider an appli-

cation where each group j corresponds to a region and each unit i to an individual within this

region. We do not have any x1ij variable. We are interested in the effect of a binary treatment

x2j , which has been randomized and is, therefore, independent from α(τ, vj). γ(τ) is the effect

of this treatment for individuals that rank at the τ quantile of yij in their region. On the other

hand, the quantile regression of yij on x2j identifies the effect for individuals that rank at the

τ quantile in the whole country (given the treatment status). These are different parameters

except if α(τ, vj) is constant over j or if the treatment effect is homogeneous such that γ(τ) = γ.

Whether conditional or unconditional quantile treatment effects are of interest depends on the

5For notational simplicity, we assume a balanced panel. However, the results generalize to unbalanced datasets.
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question at hand. For example, conditional quantile treatment effects are particularly of interest

to study within-group inequalities when groups might be regions or industries. For example,

Autor et al. (2016), and Engbom and Moser (2022) study the effect of the minimum wage on

within-state inequality, while Autor et al. (2021) study the effect of trade shock on wage in-

equality within local labor markets. If the unconditional effect is of interest, one can naturally

obtain the unconditional distribution functions by integrating out the group effects (and pos-

sibly the other variables) and then inverting the resulting distribution functions to obtain the

unconditional quantile functions, see Chernozhukov et al. 2013.6

When model (1) holds, the τ quantile regression of yij on x1ij and a constant using only

observations for group j identifies the slope β(τ) and the intercept x′2jγ(τ)+α(τ, vj). To identify

the coefficient on the group-level variables, we need to consider variation across groups. Note

that model (1) implies

E [Q(τ, yij |x1ij , x2j , vj)|x1ij , x2j ] = x′1ijβ(τ) + x′2jγ(τ) + E [α(τ, vj)|x1ij , x2j ] .

If α(τ, vj) is exogenous with respect to x1ij and x2j and the linear model is correctly specified,

E[α(τ, vj)|x1ij , x2j ] = 0 and this linear regression identifies the parameters of interest.7 The last

representation suggests a two-step estimation strategy: (i) group-level quantile regression of yij

on x1ij , (ii) OLS regression of the fitted values from the first stage on x1ij and x2j .

When the group effects α(τ, vj) are endogenous (possibly correlated with x1ij and x2j), we

assume that there is a L-dimensional vector (L ≥ K) of valid instruments zij satisfying

E[zijα(τ, vj)] = E
[
zij
(
Q(τ, yij |x1ij , x2j , vj)− x′1ijβ(τ)− x′2jγ(τ)

)]
= 0. (2)

Note that β(τ) is identified in model (1) as long as there is some variation in x1ij within

some groups. For instance, we can include the demeaned regressors, ẋ1ij = x1ij − x̄1j with

x̄1j = n−1
∑n

i=1 x1ij , in the vector of instruments zij because this variable will satisfy condition

(2) under strict exogeneity.8 On the other hand, we need additional instruments to identify

γ(τ). Equation (2) suggests a similar estimation strategy as in the exogenous case but with the

instrumental variable estimator (or more generally the GMM estimator) in the second stage: (i)

group-level quantile regression of yij on x1ij , (ii) GMM regression of the fitted values from the

first stage on x1ij and x2j using zij as instrument.

Remark 2 (Skorohod representation). The following Skorohod representation implies the

model defined in equation (1):

yij = x1ijβ(uij) + x2jγ(uij) + α(uij , vj)

= q(x1ij , x2j , uij , vj),

6We refer to Frölich and Melly (2013) for a discussion about conditional and unconditional treatment effects.
7Uncorrelation between α(τ, vj) and x1ij and x2j is sufficient to identify the linear projection.
8In the special case of traditional panel data, the demeaned regressors correspond to the within transformation.
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where q(x1ij , x2j , uij , vj) is strictly increasing in u (while fixing the other arguments). We nor-

malize uij |x1ij , x2j , vj ∼ U(0, 1) such that q(x1ij , x2j , u, vj) is the conditional quantile function.

vj ranks the groups while uij ranks the individuals within a group. In this model, a sufficient

condition for equation (2) is (uij , vj) ⊥⊥ zij . If the instrument does not vary within groups, only

vj ⊥⊥ zj is sufficient.

Remark 3 (Heterogeneous coefficients). Our model allows only the intercept to differ

between groups.9 Now consider a more general model where we also allow the slopes to differ

between groups:

yij = x′1ijβ(uij , vj) + x′2jγ(uij , vj) + α(uij , vj). (3)

If we maintain the conditional strict monotonicity assumption with respect to uij , this model

implies that

Q(τ, yij |x1ij , x2j , vj) = x′1ijβ(τ, vj) + x′2jγ(τ, vj) + α(τ, vj). (4)

In the exogenous case where (x1ij , x2j) ⊥⊥ vj , this implies

E [Q (τ, yij |x1ij , x2j , vj) |x1ij , x2j ] = x′1ij

∫
β(τ, v)dFV (v) + x′2j

∫
γ(τ, v)dFV (v) +

∫
α(τ, v)dFV (v)

= x′1ij β̄(τ) + x′2j γ̄(τ)

because we have normalized E[α(τ, vj)] = 0. It follows that the linear projection ofQ(τ, yij |x1ij , x2j , vj)
on x1ij and x2j identifies the average effects when these effects are heterogeneous. Thus, the

linear projection identifies the coefficients β(τ) and γ(τ) when the homogenous model (1) holds

and the average effect for all groups at the τ quantile of their conditional distribution when

the heterogenous model (4) holds.10 Naturally, it is also possible to modelize the heterogeneity

between groups by estimating more flexible linear projections of Q(τ, yij |x1ij , x2j , vj). For in-

stance, we can interact x1ij with indicator variables for the groups, which allows for unrestricted

heterogeneity of β(τ, vj), or by interacting x2j with observable characteristics.

Remark 4 (Least-squares versus quantile regression in the second-stage). As discussed

in Remark 3, the projection identifies the average coefficients across groups when those are

heterogeneous. It is possible to analyze the inter-group heterogeneity if we impose model (3),

restrict vj to be a scalar, and impose the strict monotonicity of x′1ijβ(u, v)+x′2jγ(u, v)+α(u, v)

with respect to v.11 When we normalize vj |x1ij , x2j ∼ U(0, 1) and α(τ, θ) = 0, we obtain in the

exogeneous case, for any 0 < θ < 1,

Q(θ,Q(τ, yij |x1ij , x2j , vj)|x1ij , x2j) = x′1ijβ(τ, θ) + x′2jγ(τ, θ).

9This is the same model as in Chetverikov et al. (2016), where a similar Skorohod representation is derived in
their footnote 6.

10In the endogenous case, we obtain the instrumental variable projection instead of the standard linear projec-
tion. For instance, if x2j is an endogenous binary variable and zij is a binary instrument, we identify the average
treatment effects for the complying individuals at the τ quantile of their conditional distribution.

11In the presence of multivariate heterogeneity, quantile regression identifies local average structural derivatives
of nonseparable models, see Hoderlein and Mammen (2007).
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All coefficients have two quantile indices: one for the heterogeneity across groups and one for

the heterogeneity within groups.12 These heterogeneous coefficients are identified by a two-step

quantile regression: (i) τ quantile regression of yij on x1ij , (ii) θ quantile regression of the

fitted values from the first-stage on x1ij and x2j . This alternative strategy identifies different

parameters and is outside the scope of this paper. We focus instead on the model defined by

equations (1) and (2), which is the same as in Chetverikov et al. (2016) and nests the fixed

effects quantile regression model (studied e.g. in Galvao et al., 2020).

2.2 Quantile Minimum Distance Estimators

Motivated by the representation in equation (2), we suggest a quantile version of the two-steps

procedure. In the first step, for each group j and quantile τ , we regress yij on individual-level

variables x1ij and a constant using quantile regression. The intercept of the first stage regression

captures both the group effect α(τ, vj) and the term x′2jγ(τ) as these vary only between groups.

In a second step, we regress the fitted values of the first stage on x1ij and x2j , using GMM with

instruments zij .

Formally, the first stage quantile regression solves the following minimization problem for each

group and quantile separately:

β̂j(τ) ≡
(
β̂0,j , β̂

′
1,j

)′
= argmin

(b0,b1)∈RK1+1

1

n

n∑
i=1

ρτ (yij − b0 − x′1ijb1), (5)

where ρτ (x) = (τ − 1{x < 0})x for x ∈ R is the check function. The true vector of coefficients

for group j is given by βj(τ) = (α(τ, vj) + x′2jγ(τ), β(τ)
′)′. In the special case that the models

do not contain any x1ij variables quantile regression estimates the percentile in each group.

Notation. Throughout the paper, we will use the following notation. Let x̃ij = (1, x′1ij)
′

and xij = (x′1ij , x
′
2j)

′. For each group j we define the following matrices. The n × K1 matrix

of group-level regressors X1j = (x1i1, x1i2, . . . , x1ij)
′, the n×K matrix containing all regressors

Xj = (xi1, xi2 . . . , x1ij)
′ and the n × L matrix of instruments Zj = (zi1, zi2, . . . , zij)

′. Further,

we define two matrices for all observations. The mn × K matrix of regressors for all groups

X = (X ′
1, . . . , X

′
m)′ and the mn× L matrix of instruments for all groups as Z = (Z ′

1, . . . , Z
′
m)′.

We let Y be the mn × 1 vector of the response variable. The fitted value for individual i in

group j at quantile τ is ŷij(τ) = β̂0,j(τ) + x′1ij β̂1,j(τ). Denote the n× 1 column vector of fitted

values for group j by Ŷj(τ) = (ŷi1(τ), . . . , yi,T (τ))
′, and the mn × 1 vector of fitted values by

Ŷ (τ) = (ŷ′1(τ), . . . , ŷ
′
m(τ))′.

Remark 5 (Alternative first-stage estimators). The Koenker and Bassett (1978) quantile

regression estimator is not necessarily efficient. Newey and Powell (1990) suggest a semiparamet-

rically efficient weighted estimator of βj(τ). We prefer to use the unweighted quantile regression

12This is similar to the instrumental variable model in Chesher (2003) and Ma and Koenker (2006), which also
contains two quantile indices: one for the selection equation and one for the outcome equation.
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estimator due to the difficulty of estimating the weights and the complex interpretation of the

estimates in case of misspecification. In our model (1), the variation within group to be ex-

ogenous. If this was not the case, it would be possible to use an instrumental variable quantile

regression (see e.g., Chernozhukov and Hansen, 2006) in the first stage, followed by the second

stage GMM regression described below.13 We do not explore this (computationally expensive)

extension in this paper.

The second stage consists in a GMM regression using E[gj(δ, τ)] = 0 as a moment condition,

where gj(δ, τ) = Z ′
j(X̃j β̂j(τ)−Xjδ(τ)) and δ(τ) = (β(τ)′, γ(τ)′)′ is the K-dimensional vector of

coefficients. This moment restriction depends on the first stage and is the sample counterpart

of E[Z ′
jαj(τ, vj)]. The closed-form expression of the second stage estimator is

δ̂(Ŵ , τ) =
(
X ′ZŴ (τ)Z ′X

)−1
X ′ZŴ (τ)Z ′Ŷ (τ), (6)

where Ŵ (τ) is a L×L symmetric weighting matrix. If L = K, the second step estimator in (6)

simplifies to the IV estimator using Z as instrument.

Our two-step estimator is extremely simple to implement; it requires only routines perform-

ing quantile regression and GMM estimation, which are already available in many softwares.

In addition, we provide general-purpose packages for both R and Stata. Quantile regression,

which is computationally more demanding due to the absence of a closed-form solution, is used

only in the first stage, where there are fewer observations and a limited number of parameters

to estimate. The first stage is also embarrassingly parallelizable, which further increases the

computational speed. For this reason, our estimator remains computationally attractive in large

datasets with numerous groups. The second stage is a straightforward GMM estimator, which

includes OLS and two-stage least squares as special cases. Traditional panel data methods can

also be used in the second stage. For instance, in our application, we observe individuals born

in a given trimester in a given county. The subscript j defines a county-trimester cell, while

the subscript i defines an individual within this cell. In the second stage, we include trimester,

county, and state × year fixed effects to estimate the effect of food stamps on the birth weight

distribution.

Remark 6 (Interpretation as a minimum distance estimator). Our estimator can be

written as a MD estimator, where the second stage imposes restrictions on the first-stage coeffi-

cients. For simplicity, in this remark, we consider the case where all the regressors are exogenous

and Z = X. The MD estimator minimizes

δ̂(τ) = argmin
β

m∑
j=1

(β̂j(τ)−Rjδ(τ))
′W̃ (τ)(β̂j(τ)−Rjδ(τ)), (7)

where W̃ (τ) is a K ×K weighting matrix that might depend on the quantile index. The matrix

of restrictions Rj is defined such that X̃jRj = Xj :

13An IV extension of the MD estimator of Galvao and Wang (2015) is suggested in Dai and Jin (2021).
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Rj
(K1+1)×K

=

(
x′2j 0

0 IK1

)
.

If we set W̃ (τ) = X̃ ′
jX̃j then the MD estimator is algebraically identical to using OLS in the

second stage.

Given the representation above, our estimator is an MD estimator. However, it does not corre-

spond to the textbook definition of a “classical minimum distance” estimator.14 In the classical

MD setup, all the sampling variance arises in the first stage: if we know the first stage coef-

ficients, we know the final coefficients. It follows that the efficient weighting matrix W̃ (τ) is

the inverse of the first-stage variance. In our case, the second stage also contributes to the

variance due to the presence of the group effects α(τ, vj). Even if we know βj(τ) (for a finite

number of groups), we cannot exactly pinpoint γ(τ). The group effects play a role similar to

misspecification in the classical MD, but the resulting ‘bias’ disappears asymptotically as the

number of groups increases. This is the second important difference: the dimension of our first

stage estimates increases with the sample size while it is fixed for classical MD estimators.

The estimators suggested by Chamberlain (1994) and Galvao and Wang (2015) are special

cases of our estimator in which only the first stage estimation error matters, and the efficient

weighting matrix is the inverse of the first stage variance.15 In section 3, we derive the asymptotic

distribution when the estimation error of both stages matters.

2.3 Least Squares Minimum Distance Estimators

Since in our model we are interested in the within-group heterogeneity, we divide the process

into two steps where the first step consists of the group by group regressions. It turns out that in

the special case of a least squares first stage, splitting the problem into two steps, does not affect

the results. This section discusses the analogy between our minimum distance estimator and

traditional least squares (panel data) estimators in the special case that least squares regression

is used in the first stage.

We present some equivalent ways to compute various common estimators and show that they

can be estimated using our two-stage minimum distance approach. A more detailed discussion

including formal statements can be found in Appendix A with proofs in Appendix A.2.

Consider first a model with group effects and group-level regressors

yij = x′1ijβ + αj + εij . (8)

The least squares fixed effects estimator can be computed by subtracting from each variable

14See section 14.6 in Wooldridge (2010).
15The efficient MD estimator of Galvao and Wang (2015) is numerically identical to our estimator using an IV

second stage with instrument (Z∗
j (τ), ζj), with Z∗

j (τ) = X̃j(X̃
′
jX̃jVj(τ)X̃

′
jX̃j)

−1X̃ ′
jZj = (X̃jVj(τ)X̃

′
j)

+Zj , where
Zj contains a constant, X1j , and ζj is a group fixed effect. The symbol + denotes the Moore-Penrose inverse.
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its group average and applying the ordinary least squares estimator.16 This within transforma-

tion eliminates the potential endogeneity coming from αj and provides a consistent estimator

without imposing assumptions on the unobserved group-level heterogeneity. This approach is

not applicable in quantile models, as there is no known transformation that eliminates the group

effects. In particular, in the traditional panel data context, time-demeaning or first-differencing

the variables modifies the interpretation of the quantile regression coefficients because the quan-

tiles are nonlinear operators. A second possibility to estimate fixed effects models consists in

estimating the group effects by including an indicator variable for each group. It is well-known

that this is algebraically identical to the within estimator. In quantile models, the dummy vari-

ables regression is computationally unattractive, as it requires estimating many parameters.17 In

addition, this approach does not provide a way to estimate the effect of the group-level variables,

especially when we need to exploit an instrumental variable to identify their effect.18

A third numerically equivalent way to compute the least squares fixed effects estimator

consists in exploiting the exogenous within variation using instrumental variable. Setting ẋ1ij =

x1ij − x̄1j where x̄1j = n−1
∑n

i=1 x1ij as an instrument in an instrumental variable regression is

numerically identical to the least squares fixed effects. This estimation procedure can be divided

into two stages. The first stage consists of group-level regressions for each j. The intercept of

each regression will absorb the unobserved heterogeneity αj . The second stage aggregates the

individual results by regressing the fitted values from the first stage on x1ij using the transformed

regressors, ẋ1ij = x1ij − x̄1j where x̄1j = n−1
∑n

i=1 x1ij , as an instrumental variable. As shown

below, using the first-stage fitted values as the dependent variable does not affect the results in

the least squares model. Whereas, the instrument exploits only the variation within individuals,

thus yielding a within estimator. This procedure can be easily extended to quantile models,

where it substantially reduces the computational burden of quantile fixed effects estimation.19

The two-step procedure is not specific to fixed effects but applies to a wide range of estima-

tors. We include the group-level regressors x2j in the model

yij = x′1ijβ + x′2jγ + αj + εij (9)

16In the context of traditional panel data we would call the j units “individuals” and the j units “time peri-
ods”. Thus, this transformation consists in the time demeaning applied in traditional panel data literature that
eliminates time-invariant individual effects.

17This approach is nevertheless feasible thanks to the sparsity of the design matrix, see Koenker (2004), and
Koenker and Ng (2005).

18Koenker (2004) suggests a penalized quantile regression estimator with group effects, which can be interpreted
as a random effects estimator. However, the linear dependence between the group indicator variables and the
group-level variables implies that the effect of these variables is identified only from the individuals with fully
shrunken group effects, see Harding et al. (2020).

19There is a fourth possibility to compute the least squares fixed estimator, which is similar to the third one,
but, not numerically identical to the within estimator. The first stage also consists of individual-level regressions
for each j. The second stage aggregates the slope coefficients directly by taking the average of the individual
slopes with weights proportional to the variance of the regressors within individuals. Galvao and Wang (2015)
suggests a similar estimator for the fixed effects quantile regression model. However, this averaging method does
not allow for the presence of group-level regressors and, more generally, does not exploit the between-individuals
variation.
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and consider our minimum distance estimator with a least squares first stage instead of quantile

regression. That is, the first stage consists of group-level least squares regressions, including

only the individual-level variables. The second stage is a linear GMM regression of the first-

stage fitted values on both individual-level and group-level variables. This two-step estimator

is algebraically identical to the one-step linear GMM regression of yij on xij under the mild

condition that for each group j, the matrix of instruments lies in the column space of the matrix

of first stage regressors (see Proposition 3 in Appendix A). The intuition is as follows. The

fitted values of the first-stage least squares regression can be written as PXjYj where PXj is the

first-stage least squares projection matrix of group j. If the instrument matrix, Zj , is in the

column space of X̃j , it follows that PXjZj = Zj . Therefore, Z ′Ŷ = Z ′Y and the two GMM

regressions are numerically identical. The matrix Zj will lies in the column space of X̃j if the

instruments are contained in X̃j or are a linear combination of the columns of the matrix of

first-stage regressors. For example, demeaned individual-level regressors as well as group-level

variables fall into the last category. Since OLS and 2SLS are special cases of GMM, the same

result follows directly.

We can numerically obtain the most common least squares panel data estimators by selecting

different instrumental variables for the second step GMM regression. In essence, the instrument

determines which variation we exploit in the second stage.20 For instance, we obtain the between

estimator by using the group averaged variables, x̄1j and x2j as instruments. Instrumental

variable approaches are available also for random effects estimation. More precisely, while FGLS

is the most common estimator for the random effects model, Im et al. (1999) show that the

overidentified 3SLS estimator, with instruments ẋ1ij , x̄1j , and x2j , is numerically identical to

the random effects estimator. Since 3SLS is a special case of a GMM estimator, using the

first-stage fitted values as dependent variables does not change the estimates. Alternatively,

the random effects estimator can be implemented using the theory of optimal instrument with

a just identified 2SLS regression (see Im et al., 1999; Hansen, 2022). Finally, the Hausman-

Taylor estimator (Hausman and Taylor, 1981) can be implemented by selecting the following

instruments: ẋ1ij , the group average of the exogenous regressors. External instruments might

also be included. Interestingly, in all cases, clustering the standard errors at the level of the

group (or at a higher level) is sufficient to capture the first stage estimation error, see Proposition

5 in Appendix A.2. These clustered standard errors are numerically identical to the standard

errors obtained after using the one-step GMM estimator with yij as the dependent variable.

3 Asymptotic Theory

In this section, we state the assumptions and present the asymptotic results. All the proofs

are included in Appendix B. For simplicity of notation, in the following, we write αj(τ) instead

20The IV approach to these panel data estimators can also be implemented in one stage with yij as the dependent
variable.
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of α(τ, vj). We prove weak uniform consistency and weak convergence of the whole quantile

regression process for τ ∈ T , where T ∈ (0, 1) is a compact set of quantile indices of interest.

The symbol ℓ∞(T ) denotes the set of component-wise bounded vector values function of T and

⇝ denotes weak convergence.

We start by writing the sampling error of δ̂(Ŵ , τ) as a sum of a component arising from the

first stage estimation error of βj(τ) and a component arising from the second stage noise αj(τ):

Lemma 1 (Sampling error). Assume that the model in equation (1) holds, then

δ̂(Ŵ , τ)− δ(τ) =
(
S′
ZXŴ (τ)SZX

)−1
S′
ZXŴ (τ)

1

mn

m∑
j=1

n∑
i=1

zij

(
x̃′ij(β̂j(τ)− βj(τ)) + αj(τ)

)
,

where SZX = 1
mn

∑N
i=1

∑n
i=1 zijx

′
ij.

We now state assumptions that ensure that both components are well-behaved. For the

analysis of the first stage estimator, we rely on results derived in Galvao et al. (2020) and make

the assumptions required in their Theorem 2:

Assumption 1 (Sampling). (i) The processes {(yij , xij , zij) : i ∈ Z} are independent across

j. (ii) For each j, the observations (yij , x1ij , z1ij)i=1,...,n are i.i.d. across i.

Assumption 2 (Covariates). (i) For all j = 1, . . . ,m and all i = 1, . . . , n, ∥xij∥ ≤ C almost

surely. (ii) The eigenvalues of E[x1ijx′1ij ] are bounded away from zero and infinity uniformly

across j.

Assumption 3 (Conditional distribution). The conditional distribution Fyij |x1ij
(y|x) is

twice differentiable w.r.t. y, with the corresponding derivatives fyij |x1ij
(y|x) and f ′

yij |x1ij
(y|x).

Further, assume that

fmax := sup
j

sup
y∈R,x∈X

|fyij |x1ij
(y|x)| < ∞

and

f̄ ′ := sup
j

sup
y∈R,x∈X

|f ′
yij |x1ij

(y|x)| < ∞.

where X is the support of x1ij

Assumption 4 (Bounded density). There exists a constant fmin < fmax such that

0 < fmin ≤ inf
j

inf
τ∈T

inf
x∈X

fyij |x1ij
(Q(τ, yij |x)|x).

These are quite standard assumptions in the quantile regression literature. In Assumption 1,

we assume that the processes are independent across j; this assumption can also be relaxed by

allowing for clustering between groups. We also assume that the observations are i.i.d. within

group, but this can be relaxed at the cost of a more complex notation by applying Theorem 4
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in Galvao et al. (2020), which requires only stationarity and β-mixing. The estimator of the

asymptotic variance that we suggest below is consistent in both cases. Assumption 2 requires

that the regressors are bounded and that E
[
x1ijx

′
1ij

]
is invertible. Assumptions 3 and 4 impose

smoothness and boundedness of the conditional distribution, the density, and its derivatives.

For the second stage GMM regression we impose the following assumptions:

Assumption 5 (Instruments). (i) For all j = 1, . . . ,m and all i = 1, . . . , n, ||zij || ≤ C a.s.

(ii) For all j = 1, . . . ,m and all i = 1, . . . , n, E[zijαj(τ)] = 0. (iii) For all j = 1, . . . ,m

and all i = 1, . . . , n, yij is independent of zij conditional on (xij , vj). (iv) As m → ∞,

m−1
∑m

j=1 Ej [zijx
′
ij ] → ΣZX where the singular values of ΣZX are bounded from below and

from above.

Assumption 6 (Group effects).

(i) For all j = 1, . . . ,m, E
[
supτ∈T |αj(τ)|4+εC

]
≤ C for εC > 0. (ii) For some (matrix-valued)

function Ω2 : T × T → RL×L, m−1
∑m

j=1 E[αj(τ1)αj(τ2)zijz
′
ij ] → Ω2(τ1, τ2) uniformly over

τ1, τ2 ∈ T . (iii) For all τ1, τ2 ∈ T , |αj(τ2)− αj(τ1)| ≤ C|τ2 − τ1|.

Assumption 7 (Coefficients). For all τ1, τ2 ∈ T and j = 1, . . . ,m, ||βj(τ2) − βj(τ1)|| ≤
C|τ2 − τ1|.

These assumptions are the same as in Chetverikov et al. (2016). For the instrumental

variables, we assume that (i) they are bounded, (ii) they are not correlated with the group effect

(exclusion restriction), (iii) they do not affect the first stage estimation (this is often satisfied

by construction, e.g. when the instruments do not vary within individuals or are a linear

transformation of the first stage regressors), and (iv) they satisfy the relevance conditions. For

the group effects we assume that they have a finite fourth moment, and the average variance of

zijαj(τ) converges to a well-defined matrix. Finally, we assume that the group effects and the

coefficients are continuous functions of the quantile index.

Since the unobserved heterogeneity α(τ, vj) is group-specific, we require that the number of

groups m diverges to infinity. The first stage quantile regression estimator is a nonlinear esti-

mator that has potentially a bias of order 1
n . Hence, for consistency, the number of observations

per group n must also diverge to infinity. For unbiased asymptotic normality, we need the bias

to shrink faster than the standard deviation of the estimator. We will show that some elements

of δ̂(W, τ) converge at the
√
m rate such that we need that n goes to infinity more quickly than

√
m. On the other hand, other elements converge at the

√
mn rate so that n goes to infinity more

quickly than m. We state these three different relative growth rates in the following assumption:

Assumption 8 (Growth rates). As m → ∞, we have

(a) logm
n → 0,

(b)
√
m logn
n → 0,

14



(c) m(logn)2

n → 0.

In our first result, we establish uniform consistency of our estimator. In addition to the

previously stated conditions, we assume that the estimated weighting matrix uniformly converges

to a strictly positive definite matrix that is continuous in the quantile index.21

Theorem 1 (Uniform consistency). Let the model in equation (1), Assumptions 1-7 as well

as Assumption 8(a) hold. Uniformly in τ ∈ T , Ŵ (τ) →
p

W (τ) where W (τ) is strictly positive

definite and, for all τ1, τ2 ∈ T , ||W (τ2)−W (τ1)|| ≤ C|τ2 − τ1|. Then,

sup
τ∈T

∥δ̂(τ)− δ(τ)∥ = op(1).

We now study the asymptotic distribution of our estimator. In Lemma 1 we see that the

sample moment condition is made of two terms. It is useful to consider them separately:

ḡ(1)mn(δ̂, τ) :=
1

mn

m∑
j=1

n∑
i=1

zij x̃
′
ij

(
β̂j(τ)− βj(τ)

)
(10)

ḡ(2)mn(δ̂, τ) :=
1

mn

m∑
j=1

n∑
i=1

zijαj(τ) (11)

such that total moment condition is the sum of both components: ḡmn(δ̂, τ) := ḡ
(1)
mn(δ̂, τ) +

ḡ
(2)
mn(δ̂, τ) = 1

mn

∑m
j=1

∑n
i=1 gij(δ̂, τ). Lemma 2 establishes joint asymptotic normality for the

entire moment condition processes.

Lemma 2 (Asymptotic distribution of the sample moments). We assume that Assump-

tions 1-7 hold.

(i) Under Assumption 8(c), as m → ∞,

√
mnḡ(1)mn(δ̂, ·)⇝ Z1(·), in l∞(T ), (12)

where Z1(·) is a mean-zero Gaussian process with uniformly continuous sample paths and co-

variance function Ω1(τ, τ
′) = Ej

[
ΣZXjVj(τ, τ

′)Σ′
ZXj

]
with ΣZXj = E[z1j x̃′1j ] and Vj(τ, τ

′) is

the asymptotic variance-covariance matrix of β̂j(τ) and β̂j(τ
′):

Vj(τ, τ
′) = E[fy|x(Qy|x(τ |x̃1j)|x̃1j)x̃1j x̃′1j ]−1(min(τ, τ ′)−ττ ′)E[x̃1j x̃′1j ]Et[fy|x(Qy|x(τ

′|x̃1j)x̃1j x̃′1j ]−1

(ii) Under Assumption 8(b), As m → ∞,

√
mḡ(2)mn(δ̂, ·)⇝ Z2(·), in l∞(T ), (13)

where Z2(·) is a mean-zero Gaussian process with uniformly continuous sample paths and co-

variance function Ω2(τ, τ
′), which is defined in Assumption 6(ii).

21The efficient weighting matrix suggested below may actually be asymptotically singular. For this reason, in
Appendix B we also provide an alternative consistency result (Theorem 1′) that applies to the efficient estimator.
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(iii) Under Assumption 8(c), as m → ∞, sup
τ∈T

(
ḡ
(1)
mn(δ̂, ·), ḡ(2)mn(δ̂, ·)

)
= op

(
1

mn

)
.

ḡ
(1)
mn(δ̂, ·) reflects the estimation error that arises in the first stage quantile regression estima-

tion. Since the first-stage regressors vary within groups, the relevant number of observations is

mn and, correspondingly, the variance is proportional to 1/(mn). On the other hand, since the

bias of the first-stage quantile regression is of order 1/n, for asymptotic unbiasedness, we must

require that n goes to infinity slightly faster than m. In the proof we build on results derived in

Volgushev et al. (2019) and in Galvao et al. (2020). ḡ
(2)
mn(δ̂, ·) reflects the estimation error due

to the randomness in αj(τ). This moment can also be interpreted as the moment that would

be relevant if we knew βj(τ). Since αj(τ) varies only between groups, the relevant number of

observations here is m and, accordingly, the variance of this moment converges at the slower rate

of 1/m. For asymptotic unbiasedness, we need only the weaker condition 8(b), which requires

that n goes to infinity slightly faster than
√
m.

The moment condition ḡmn(δ̂, τ) is, thus, the sum of two components that converge at

different rates to zero. Its first-order asymptotic distribution will be dominated by the slowest

component, which is ḡ
(2)
mn(δ̂, τ), except if its variance is zero. Since the degree of group-level

heterogeneity affects this variance, it is useful to consider three cases: strong heterogeneity,

no heterogeneity, and weak heterogeneity. We first derive the asymptotic distribution of our

estimator when the level of heterogeneity is known and then we suggest an estimator that is

efficient in all cases and adaptive inference procedures.

We start with the case of strong heterogeneity that we define to be Var(αj(τ)) > ε > 0

uniformly in τ .22 We must distinguish between two sort of instruments: L1 instruments in z1ij

satisfy z̄1j = 0 for all j, while L2 instruments in z2ij satisfy z̄2j ̸= 0 at least for some groups

j. We order the instruments such that zij = (z′1ij , z
′
2ij)

′. Note that instruments that vary only

within groups can be normalized to have mean zero. For instance, we can identify the effect

of individual-level variables xij by instrumenting it with ẋij = xij − x̄j , which has a mean of

zero in all groups and corresponds to the fixed effects estimator. For instruments of the first

type, the associated elements of ḡ
(2)
mn(δ̂, ·) = 0 such that the corresponding elements of ḡmn(δ̂, ·)

converge at the
√
mn rate. Thus, we have L1 ‘fast’ moments that converge at the

√
mn rate

and L2 ‘slow’ moments that converge at the
√
m rate.

The rate of convergence of each element of δ̂(W, ·) is determined by the rate of convergence of

the moments that are used asymptotically to estimate this parameter. In the exactly identified

case, our estimator simplifies to the instrumental variable estimator such that the estimation

error is

δ̂(τ)− δ(τ) = S−1
ZX ḡmn

22We will allow later for different levels of heterogeneity at different quantiles but keep the exposition simple
at the moment.

16



and SZX →
p
ΣZX . We partition ΣZX and assume that it is block lower triangular:

ΣZX =

(
Σ11 Σ12

Σ21 Σ22

)
=

(
Σ11 0
Σ21 Σ22

)
(14)

where Σ11 is L1 ×K1, Σ12 is L1 ×K2, Σ21 is L2 ×K1 and Σ22 is L2 ×K2. Then it follows that

the first K1 elements of δ̂ are determined only by the ‘fast’ moments while the remaining K2

elements are also determined by the ‘slow’ moments.

The coefficients on variables that vary only between groups cannot be estimated using the

‘fast’ instruments z1ij , which do not vary between groups. Formally, the full rank condition 5(iv)

requires that group-level variables are identified with instruments that vary between groups.

The related coefficients will necessarily converge at the slow
√
m rate. On the other hand,

coefficients on individual-level variables can be estimated using only the within-group variation,

that is by using ẋij as instrument for xij . These instruments are by construction uncorrelated

with variables that vary only across group, which satisfies condition 14. For this reason and

to avoid additional notation, we denote the number of individual-level variables and of ‘fast’

coefficients by the same symbol K1.
23

When the model is overidentified, condition (14) does not guarantee that the ‘slow’ instru-

ment will not contaminate if the asymptotic GMM weighting matrix W (τ) has full rank, then

the slow moments will asymptotically dominate. Since the rate of convergence of these pro-

cesses are different, the rate of convergence and the first-order asymptotic approximation will

be determined by the slower moment, which is ḡ
(2)
mn(δ̂, ·).

We summarize and formalize this discussion in the following theorem.

Theorem 2 (Asymptotic distribution when the degree of heterogeneity is known).

Let Assumptions 1-7 hold. In addition, Ŵ (τ) →
p

W (τ) uniformly in τ ∈ T . We partition the

L× L weighting matrix as follows

W (τ) =

(
W11(τ) W12(τ)
W21(τ) W22(τ)

)
where W11(τ) is a L1 × L1 matrix and W22(τ) a L2 × L2 matrix. For all τ1, τ2 ∈ T , ||W (τ2)−
W (τ1)|| ≤ C|τ2 − τ1|. Let Σ11 and Σ22 be the L1 × K1 upper-left and L2 × K2 bottom-right

submatrices of ΣZX .

(i) Let Assumption 8(c) hold, W11(τ) is strictly positive definite, W12(τ) = 0, W21(τ) = 0, and

W22(τ) = 0. Then,

√
mn(δ̂1(Ŵ (·), ·)− δ1(·))⇝ G1(·)Z1(·), in l∞(T ), (15)

where G1(τ) = (Σ′
11W11(τ)Σ11)

−1Σ′
11W11(τ).

23The results can be trivially extended to the case where some individual-level variables are identified using
only group-level variables.
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(ii) Let Assumption 8(b) hold and W (τ) is strictly positive definite, then

√
m(δ̂2(Ŵ (·), ·)− δ2(·))⇝ G2(·)Z2(·), in l∞(T ), (16)

where G2(τ) = (Σ′
22W22(τ)Σ22)

−1Σ′
22W22(τ).

The asymptotic distribution in Theorem 2(ii) is the same as in Chetverikov et al. (2016)

but we were able to weaken the growth rate condition from m2/3 logn
n → 0 to m1/2 logn

n → 0

by exploiting new results in Galvao et al. (2020). δ̂1(W, τ) and δ̂2(W, τ) have both different

rates of convergence, and require different growth conditions. These estimators are first-order

efficient if W1(τ) = Ω1(τ)
−1 and W2(τ) = Ω2(τ)

−1. These results have several weaknesses.

First, the asymptotic distribution is not uniform in Var(αj(z̄jτ)) and the rate of convergence

changes discontinuously if, for example, Var(z̄jαj(τ)) converges to zero. Second, for δ̂1(W, τ), we

do not use the information contained in the slow moments. Consider, for example, the random

effects estimator where all the regressors are individual-level. The vector of instruments consists

of xij − x̄j and x̄j . Considering only the first-order asymptotic distribution, we can obtain a

first-order efficient estimator by giving zero weights to the slow moments. In other words, the

instruments x̄j are not used because their contribution is asymptotically negligible, and the

random effects estimator would be equivalent to the fixed effects estimator.24 Third, for the

δ̂2(W, τ), variance coming from the first stage does not appear in the asymptotic distribution

because it converges to zero at a quicker rate. Consequently, inference may have poor properties.

To solve these issues, we keep both moments together, implement adaptive inference that takes

the first stage error into account, and use the slow moment with weights that decline at the n−1

rate.

Note that
√
mḡmn(δ̂, ·)⇝

Z1(·)
n

+ Z2(·). (17)

Following standard GMM arguments, the efficient weighting matrix is given by

W (τ)∗ = (Ω1(τ)/n+Ω2(τ))
−1 . (18)

With this weight matrix, asymptotically, the fast moments get weighted infinitely more than

the slow moments, so the parameters identified by the fast moments will converge at the
√
mn

rate. The parameters that are identified only by the slow moments will not be affected by W1

such that their asymptotic distribution will depend only on W2.
25

We estimate this weighting matrix by

Ŵ (τ)∗ = Ω̂(τ)−1 =

 1

m

m∑
j=1

Z ′
j ũj(τ)ũj(τ)

′Zj

−1

.

24This is not specific to quantile models and also affects least squares models with large n (see Ahn and Moon,
2014).

25As we can see in the proof of Proposition 2, the fact that W1 is multiplied with n does not cause a problem
because the weighting matrix matters only up to scale.
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The n× 1 vector ũj(τ) contains the residuals from a preliminary second stage regression using

an inefficient weighting matrix. Consistency of Ω̂ follows directly by the proof of Proposition 1

below.

For asymptotic normality of the adaptive estimator we need to impose the strongest growth

rate condition 8(c):

Theorem 3 (Adaptive estimator). Let Assumptions 1-7 and 8(c) hold. Then,

√
m(δ̂(Ω̂(·), ·)− δ(·))⇝ G(·)

(
Z1(·)
n

+ Z2(·)
)
, in l∞(T ), (19)

where Z1(·) and Z2(·) are defined in Lemma 2.

We have seen that the convergence rate and the asymptotic distribution of our estimator

changes substantially depending on the data generating process. For this reason, we want to sug-

gest an adaptive inference procedure that is uniformly valid over different degree of heterogeneity

and convergence rates of the estimator. Surprisingly, we find that clustering the second-stage

covariance matrix at the individual level yields uniformly consistent estimator of the covariance

matrix over different degrees of unobserved heterogeneity and convergence rates. Thus, infer-

ence does not require estimating the density of the quantile regression in the first stage and

is computationally straightforward. Clustering automatically takes the first stage variance into

account also for
√
m-consistent parameters, thus providing a higher-order improvement. This

simple procedure might work in a broader range of situations, and it is of interest on its own.

A similar bootstrap-based procedure is suggested in Fernández-Val et al. (2022).

To estimate the covariance matrix, define the n × 1 vector of residuals ûj(τ) = X̃j β̂j(τ) −
Xj δ̂(τ). Then the covariance matrix of δ̂(τ) is estimated by

V̂δ(τ) =
(
X ′ZŴZ ′X

)−1
X ′ZŴ

 m∑
j=1

Z ′
j ûj(τ)ûj(τ)

′Zj

 ŴZ ′X
(
X ′ZŴZ ′X

)−1
.

The following proposition shows that the covariance matrix consistent of uniformly in the

variance of z̄jαj .

Proposition 1 (Consistency of the estimated covariance matrix). Let assumptions 1-7

and 8(c) hold. Let η ∈ RK with ||η|| > ε > 0. Let

Vδ(τ) = G(τ)

(
Ω1(τ)

mn
+

Ω2(τ)

n

)
G(τ)′.

Then,

η′V̂δ(τ)η

η′Vδ(τ)η
= op(1).

19



Proposition 1 show that the clustered covariance matrix provides uniformly valid inference in

Var(z̄jαj) and therefore, valid regardless of the speed of convergence of the moment conditions.

Similar results based on cross-sectional (clustered) bootstrap are suggested in Liao and Yang

(2018); Lu and Su (2022); Fernández-Val et al. (2022).

If there are more moment conditions than parameters to estimate (L > K), it is possible

to test overidentifying restrictions with an overidentification test in the second stage (see e.g.

Hansen, 1982). More precisely, we want to test the hypothesis H0 : E[Z ′
jαj(τ)] = 0. Compared to

a traditional GMM, our overidentification test has to deal with the possible different convergence

rates of the elements of δ̂. We solve this issue by rescaling the efficient weight matrix by Λn,

where Λn is a K × K diagonal matrix with
√
n for the first K1 elements and 1 otherwise.

Let gj(δ, τ) = Z ′
j

(
Ŷj(τ)−Xjδ(τ)

)
and ḡm(δ, τ) = 1

m

∑m
j=1 gj(δ, τ). Define the GMM criterion

function

J
(
δ̂(τ)

)
= mḡm(δ̂, τ)′Ŝ−1(τ)ḡm(δ̂, τ), (20)

where Ŝ = Λ−1
n Ω̂Λ−1

n is the inverse of the second order optimal weighting matrix. Note that

this weight matrix is uniformly efficient over different degrees of unobserved heterogeneity and

different convergence rates of the moment conditions.

Proposition 2. Under the H0 and Assumptions 1-6 and 8(c) as n and m → ∞, J(δ̂(τ))
d−→

χ2
L−K .

Hence, the criterion function J
(
δ̂(τ)

)
can be used to assess the validity of the instruments.

In the next section, we show how this overidentification test can be used as a generalization of

the Hausman Test for the random effects estimator.

4 Traditional Quantile Panel Data Estimators

4.1 Fixed Effects, Random Effects and Between Estimators

In this section, we discuss a particular case of our model in which j indexes the individuals

and i indexes the time periods. This case corresponds to the traditional panel data setting. In

this literature, the x1ij variables are usually called time-varying variables, and the x2j variables

are called time-invariant or time-constant variables. Through this section, we will use this

terminology (individuals and time periods) that is commonly used in traditional panel data.

The MD estimator can be used for many panel data models, including the fixed effects, the

random effects, the between, and the Hausman-Taylor model. The first stage estimator uses only

data for one individual at the time and is unaffected. In the second stage, as for least squares

estimation (see section 2.3), we compute panel data estimators by selecting different instruments.

Depending on the model, the instrument zij will be defined so that the orthogonality condition

in equation (2) holds. More precisely, for fixed effects estimation, the instrument zij contains
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the demeaned regressor ẋ1ij and varies only within j. For the between estimator, zij equals the

individual mean of the regressors x̄ij . Finally, for the pooled estimator, zij = xij .
26

Implementing efficient estimation is one of the main challenges of quantile random effects as

the model is overidentified. We suggest two different estimators. The first is an efficient GMM

estimator, while the second uses optimal instruments. Given the first stage, we have the following

moment restriction:

E[Z ′
j(X̃j β̂j(τ)−Xjδ(τ)] = 0. (21)

If the instrument Zj contains both the mean and the demeaned regressors, the efficient GMM

will optimally weight the within and between variation. The moment condition in equation

(21) contains both fast and slow moments, but the fast moments are sufficient to identify the

coefficients on the individual-level regressors. The first-order efficient weighting matrix would

give zero weights to the slow moment, and the random effects estimator would be identical

to the fixed effects estimator. Using an efficient weighting matrix, we obtain a more efficient

random effects estimator by also exploiting the between variation. The weighting matrix can

be computed as described in section 3. As m → ∞, the relative weights given to the slow

moments converge to 0, and the random effect estimator converges to the fixed effects estimator

(see Baltagi, 2021; Ahn and Moon, 2014 for a similar argument in least squares models).

If we impose the stronger assumption that the moment restriction in equation (21) holds

conditional on Zj , we can use the theory of optimal instruments to derive a random effects esti-

mator. Optimal instruments are relevant when a researcher has a conditional moment restriction

of the form E[gj(δ, τ)|Zj ] = 0. When a moment condition holds conditional on Zj , an infinite

set of valid moments exist, and one could use additional moments to increase efficiency. The

goal is to select the instrument that minimizes the asymptotic variance, which takes the form

Z∗
j = E[gj(δ, τ)gj(δ, τ)′|Zj ]

−1Rj(δ, τ), with Rj(δ, τ) = E[ ∂∂δgj(δ, τ)|Zj ] (see, e.g., Chamberlain,

1987 and Newey, 1993). To implement the random effect estimator with optimal instruments,

we set Zj = Xj . Under the additional assumption that E[α2
j (τ)|Xj ] = σ2

α(τ), the optimal in-

strument simplifies to Z∗
j (τ) =

(
X̃j

Vj(τ)
n X̃ ′

j + l′nlnσ
2
α(τ)

)+
Xj , where Vj(τ) is the asymptotic

variance from the first stage for a group j, ln is a n-dimenstional vector of ones, and + denotes

the Moore-Penrose inverse.27 If E[α2
j (τ)|Xj ] = σ2

α(τ), the random effect estimator based on

optimal instruments is efficient.

A few remarks about the optimal instruments follow. First, under standard random effects

assumptions, the optimal instrument applied to mean random effects models is numerically

identical to the FGLS estimator. Second, in least squares models, using the moment restrictions

26The fixed effects estimator, in general, does not allow estimating γ, as the effect of time-constant variables is
not identified separately from the group effects. In some situations, it is still possible to estimate γ by strengthening
the assumption on the group-level regressors x2j without changing the assumptions on individual-level regressors
x1ij . If x2j is uncorrelated with αj , it is possible to consistently estimate γ by regressing the fitted values for
each quantile τ on xij using demeaned x1ij and x2j as instruments. Therefore, our two-step approach allows us
to consistently estimate the effect of group-level regressors using the same approach as with linear regression.

27Since the matrix (X̃j
Vj(τ)

n
X̃ ′

j + l′nlnσ
2
α(τ)) is singular, we use the Moore-Penrose inverse.
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with the true outcome or the first stage fitted values imply the same optimal instrument. To

put it differently, under random effects assumptions, the matrix X̃j
Vj

n X̃ ′
j + l′nlnσ

2
α simplifies to

the usual random effects structure. These results are summarized in Proposition 4 in Appendix

A.2. Third, if σα = 0, this estimator is identical to the efficient MD estimator (see Proposition

6 in Appendix C). Fourth, the optimal instrument depends on n analogously to the efficient

weighting matrix of the GMM estimator. As n increases, the first stage variance converges to

zero, and the generalized inverse will give infinitely more weights to the within variation and

asymptotically converge to the fixed effects estimator.

To make the optimal instrument approach operational, we need a consistent estimator of

Z∗
j . In the following, we assume that E[α2

j (τ)|Xj ] = σ2
α(τ) and we suggest estimators for Vj(τ)

and σ2
α(τ). Compared to the classical random effects structure, we use the first stage variance.28

This formula has two main advantages. First, it is straightforward to compute V̂j . Second, it

is possible to allow for dependence in the errors in the first stage regressions. The first stage

variance can be estimated by V̂j(τ) = Â−1
j (τ)B̂j(τ)Â

−1
j (τ) where Âj(τ) = τ(1− τ) 1n

∑n
i=1 x̃ij x̃

′
ij

and Bj(τ) can be computed using the Kernel Density estimator of Powell (1991):

B̂j(τ) =
1

nh

n∑
i=1

K

(
yij − x̃′ijβj(τ)

h

)
x̃ij x̃

′
ij , (22)

where K(·) is the uniform kernel K(u) = 1
2I(|u| ≤ 1). Alternatively, Vj(τ) can be estimated

by bootstrapping the first stage for each individual separately. We estimate σα(τ) using the

estimator suggested by Nerlove (1971):

σ̂2
α(τ) =

m

m− 1

m∑
j=1

(α̂j(τ)− ¯̂αj(τ))
2, (23)

where ¯̂αj =
1
m

∑m
j=1 α̂j and the αj are estimated by a preliminary least squares dummy variable

regression of ŷij(τ) on xij .
29

Compared to the optimal instrument approach, efficient GMM relies on weaker conditions,

and it is simpler to implement as it does not require a direct estimation of Vj(τ). Instead, it

requires only the consistent estimation of the efficient weighting matrix, which is simpler to

estimate.

4.2 Hausman and Taylor Model

The Hausman-Taylor model allows to find instrumental variables from inside the model. It

is a middle ground between fixed effects and random effects. On the one hand, the random

effects estimator relies on the orthogonality between αj(τ) and xij . On the other hand, the

fixed effects estimator only identifies the effect of individual-level variables. To estimate the

28Using the first stage variance will not impose equality on the estimated densities of the errors f̂Yj−X̃jβj
(0) in

the second stage. Thus, observations will be weighted differently, depending on the first stage variance.
29The formula can be modified to accommodate unbalanced panels.
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effect of group-level variables, Hausman and Taylor (1981) assume that some elements of Xj are

uncorrelated with αj(τ). We consider model (1) but we partition X into four types of variables,

X = [Xx
1j Xn

1j Xx
2j Xn

2j ], where the superscript x indicates that the variable is exogenous, and

the superscript n indicates that it might be endogenous. Thus,

E[Xx
1jαj(τ)] = 0,

E[Xx
2jαj(τ)] = 0.

The assumptions imply that we can estimate δ(τ) using the instrument Zj = (Ẋx
1j , Ẋ

n
1j ,

X̄x
1j , X

x
2j). While Xn

2j is potentially endogenous, the within variation is uncorrelated with αj(τ)

as it varies only between j. Identification requires that there are at least as many instruments

as parameters to estimate. Hence, we need dim(xx1ij) ≥ dim(xn2j). If the model is overidentified,

it is possible to implement efficient GMM, and if conditional moment restrictions are available,

optimal instruments can be used. Implementation of the optimal instrument is not straightfor-

ward as it requires the estimation of E[Xj |Zj ], usually estimated nonpametrically (see Newey,

1993). In this paper, we do not contribute in this direction. In the special case where there is

no Xn
1j , so that all individual-level regressors are exogenous, the optimal instrument approach

can more easily be implemented as the first stage includes only exogenous variables.

4.3 Hausman Test

Consistency of the random effects estimator relies on stronger orthogonality conditions com-

pared to the fixed effects estimator. Under these stronger assumptions, both estimators are

consistent, but the fixed effects is inefficient. Hausman (1978) suggested a test for the null hy-

pothesis of random effects against the alternative of fixed effects. This subsection explains how

we can use the overidentification test presented in Section 3 as a quantile version of the Haus-

man test for our two-step estimator. Various generalizations of the Hausman test have been

suggested in the literature (see, e.g., Chamberlain, 1982; Mundlak, 1978; Wooldridge, 2019).

Arellano (1993) considers an heteroskedasticity and autocorrelation robust generalization based

on a Wald test. Ahn and Low (1996) propose a GMM test based on a 3SLS regression as an

equivalent method for the Hausman test. In Section 4, we suggest efficient GMM as a pos-

sibility to perform random effects estimation. The assumption of correct specification of the

first stage is maintained both under the null and the alternative hypotheses. Compared to the

fixed effects estimator, consistency of the random effects estimator additionally requires that

Xj is uncorrelated with αj(τ) so that E[Ẋ ′
1jαj(τ)] = 0 and E[X̄ ′

jαj(τ)] = 0 are a valid moment

conditions. By contrast, the fixed effects rely only on the moment condition E[Ẋ ′
1jαj(τ)] = 0.

Consequently, the overidentification test suggested in Section 3 can be used as a test of the

H0 : E[Ẋ ′
1jαj(τ)] = 0 and E[X̄ ′

jαj(τ)] = 0, which is a test of the random effects orthogonality

conditions. Compared to the traditional Hausman test, our test does not rely on the assumption

of conditional homoskedasticity of the errors and is robust to clustering.

23



4.4 Simulations

This section presents simulation results for the different panel data estimators and the

Hausman-type test presented in the previous subsections. These simulations focus on the esti-

mation of β(τ), while the next section includes results for γ(τ). We consider the following data

generating process where all variables are scalars:

yij = βx1ij + αj + (1 + 0.1x1ij)νij . (24)

We let β = 1 and νij ∼ N (0, 1). The regressor is defined by x1ij = hj+0.5uij , with uij ∼ N (0, 1)

and (
hj
αj

)
∼ N

((
0
0

)
,

(
1 λ
λ 1

))
.

If λ ̸= 0, x1ij is correlated with αj . For the simulation of the panel data estimators, we let λ = 0

so that all estimators are consistent. In contrast, in the Monte Carlo study of the Hausman

test, we set λ = {0, 0.1, 0.2, 0.3, 0.4}. The true coefficient takes the values β(τ) = β+0.1F−1(τ)

where F is the standard normal CDF. We consider the samples with n = {10, 25, 200} and

m = {25, 200} and focus on the set of quantiles T = {0.1, 0.5, 0.9}. All simulation results are

based on 10,000 replications. Table 1 shows the bias and the standard deviations, and Table 2

shows the coverage probability of the confidence intervals. Simulation results of the rejection

probabilities of the Hausman test are in Table 3.

As shown in Table 1, the estimators perform well also when both m and n are small. The

RE-GMM (random effects implemented by GMM) estimator performs similarly to the RE-OI

(random effects implemented with optimal instruments) estimator and, in some cases, even

better. As expected, asymptotically, the RE-GMM, the RE-OI, and the fixed effects (FE)

estimators become indistinguishable as n increases. Whereas with small n, there is an apparent

gain in using a random effects estimator. From the standard deviations, it is possible to see the

different rates of convergence of the estimators. The precision of the fixed effects and random

effects estimators increases in similar magnitude whenm or n increases. In contrast, the standard

deviation of the pooled and between (BE) estimator decreases only when m increases. The

pooled and the between estimators have the smallest bias but, in most cases, also the largest

variance.

The coverage probabilities of the 95% confidence intervals are in Table 2. The confidence

intervals of the pooled and the fixed effects estimator perform well in all sample sizes considered.

On the other hand, the confidence bands of the random effects estimators slightly undercover

the true parameter mostly when n is small. In larger samples, all the coverage probabilities are

close to the theoretical level.

Table 3 shows the rejection probabilities of the overidentification test for different values of

λ. When λ = 0, the H0 is satisfied, so we should reject the null at a rate close to 5%. If λ ̸= 0,

Xj is correlated with αj some moment conditions used by the RE-GMM estimator are not valid.
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Quantile Pooled BE FE RE GMM

(m, n) = (25, 10)
0.1 0.009 0.002 0.037 0.044 0.014

(0.193) (0.235) (0.261) (0.177) (0.178)
0.5 0.000 0.000 -0.001 0.000 0.000

(0.182) (0.224) (0.172) (0.168) (0.143)
0.9 -0.010 -0.003 -0.039 -0.045 -0.015

(0.195) (0.235) (0.259) (0.181) (0.180)

(m, n) = (200, 10)
0.1 0.011 0.005 0.040 0.046 0.019

(0.068) (0.080) (0.092) (0.067) (0.061)
0.5 0.001 0.001 0.001 0.001 0.001

(0.063) (0.076) (0.059) (0.063) (0.047)
0.9 -0.010 -0.003 -0.040 -0.045 -0.018

(0.067) (0.080) (0.091) (0.068) (0.060)

(m, n) = (25, 25)
0.1 0.003 0.000 0.015 0.016 0.008

(0.175) (0.222) (0.141) (0.120) (0.124)
0.5 -0.003 -0.004 0.000 -0.002 -0.002

(0.171) (0.218) (0.102) (0.106) (0.099)
0.9 -0.009 -0.007 -0.017 -0.018 -0.013

(0.177) (0.223) (0.138) (0.120) (0.124)

(m, n) = (200, 25)
0.1 0.006 0.004 0.015 0.017 0.011

(0.061) (0.075) (0.049) (0.042) (0.041)
0.5 0.000 0.000 0.000 0.000 0.000

(0.059) (0.073) (0.036) (0.036) (0.032)
0.9 -0.006 -0.004 -0.015 -0.017 -0.012

(0.061) (0.075) (0.049) (0.042) (0.041)

(m, n) = (25, 200)
0.1 0.001 0.002 0.002 0.002 0.002

(0.163) (0.211) (0.049) (0.047) (0.056)
0.5 0.001 0.001 0.000 0.000 0.001

(0.163) (0.210) (0.035) (0.035) (0.045)
0.9 0.000 0.001 -0.002 -0.002 -0.002

(0.163) (0.211) (0.049) (0.046) (0.056)

(m, n) = (200, 200)
0.1 0.000 0.000 0.002 0.002 0.002

(0.058) (0.073) (0.017) (0.016) (0.017)
0.5 0.000 0.000 0.000 0.000 0.000

(0.058) (0.072) (0.013) (0.012) (0.012)
0.9 -0.001 -0.001 -0.002 -0.002 -0.002

(0.058) (0.073) (0.017) (0.017) (0.017)

Note:
The table reports bias and standard deviation (in paren-
theses) of the simulations for β(τ) from 10,000 Monte Carlo
Simulations.

Table 1: Bias and Standard Deviation of β̂(τ)
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Quantile Pooled BE FE RE GMM

(m, n) = (25, 10)
0.1 0.948 0.922 0.946 0.914 0.918
0.5 0.946 0.920 0.948 0.914 0.919
0.9 0.950 0.924 0.950 0.912 0.916

(m, n) = (200, 10)
0.1 0.942 0.941 0.927 0.874 0.933
0.5 0.947 0.943 0.952 0.943 0.948
0.9 0.946 0.942 0.932 0.877 0.935

(m, n) = (25, 25)
0.1 0.949 0.921 0.949 0.933 0.923
0.5 0.946 0.918 0.948 0.931 0.923
0.9 0.946 0.917 0.951 0.931 0.921

(m, n) = (200, 25)
0.1 0.947 0.945 0.942 0.928 0.940
0.5 0.950 0.945 0.954 0.948 0.948
0.9 0.948 0.946 0.938 0.927 0.938

(m, n) = (25, 200)
0.1 0.950 0.923 0.950 0.947 0.920
0.5 0.949 0.926 0.952 0.948 0.916
0.9 0.947 0.925 0.950 0.948 0.918

(m, n) = (200, 200)
0.1 0.948 0.943 0.947 0.950 0.946
0.5 0.947 0.943 0.951 0.950 0.950
0.9 0.948 0.944 0.949 0.949 0.945

Note:
Results based on 10,000 Monte Carlo simulations.
The table reports the coverage probabilities of the
confidence intervals of β(τ).

Table 2: Properties of the 95% Confidence Invervals
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λ

Quantile 0.0 0.1 0.2 0.3 0.4

(m, n) = (25, 10)
0.1 0.052 0.058 0.077 0.118 0.181
0.5 0.057 0.073 0.117 0.195 0.306
0.9 0.050 0.067 0.095 0.147 0.224

(m, n) = (200, 10)
0.1 0.062 0.085 0.276 0.578 0.844
0.5 0.050 0.177 0.533 0.872 0.987
0.9 0.058 0.193 0.483 0.782 0.949

(m, n) = (25, 25)
0.1 0.060 0.075 0.121 0.209 0.342
0.5 0.064 0.087 0.152 0.269 0.430
0.9 0.059 0.081 0.140 0.231 0.363

(m, n) = (200, 25)
0.1 0.051 0.167 0.555 0.898 0.994
0.5 0.051 0.232 0.691 0.963 0.999
0.9 0.049 0.231 0.646 0.938 0.997

(m, n) = (25, 200)
0.1 0.086 0.119 0.212 0.366 0.567
0.5 0.101 0.138 0.248 0.417 0.615
0.9 0.085 0.118 0.218 0.374 0.570

(m, n) = (200, 200)
0.1 0.054 0.262 0.773 0.986 1.000
0.5 0.055 0.276 0.792 0.989 1.000
0.9 0.053 0.273 0.787 0.987 1.000

Note:
The table reports rejection probabilities of the
Hausman test. The results are based on 10,000
Monte Carlo simulations. The first column, shows
the empirical size, while the other columns show
the power of the test.

Table 3: Hausman Test

In this case, higher rejection probabilities suggest a more powerful test. The first column shows

that the empirical sizes of the test are close to the theoretical levels in most sample sizes. The

power of the test is higher in large samples and increases the larger the correlation between

x̄1j and the unobserved heterogeneity αj . An increase in m substantially improves the power

of the test, while a larger number of time periods n improves the results to a lesser extent. In

general, the test performs better both in terms of size and power when m is large, which is most

often the case in empirical applications. Although as n increases the random effects estimator

converges to the fixed effects estimator, and the random effects estimator of β will be consistent

even if λ ̸= 0, the size and power of the test do not deteriorate. This result is consistent with

the findings in Ahn and Moon (2014).
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Figure 1: First Stage Regressions

The figure illustrates the venerability of the intercept to extrapolation and misspecification. Both panels show
generated data for one group and a first-stage fit. Panel (a) uses the same DGP as in the simulation of CLP. The
solid line shows the regression line estimated by median regression, and the dashed red line is the true regression
line. Panel (b) uses a different DGP where y = 15− 0.5x− 0.2x2 + u, where u ∼ N(0, 1), x ∼ N(3, 1). The solid
line is estimated by least squares regression without the quadratic term (misspecified). The dashed red line is the
true regression line.

5 Grouped (IV) Quantile Regression Model

In this section, we discuss the group (IV) quantile regression model and compare our esti-

mator with the estimator suggested by Chetverikov et al. (2016).

5.1 Chetverikov et al. (2016)

Chetverikov et al. (2016) (CLP) suggest an estimator for the group (IV) quantile regression

model. They consider two variations of the model. The first one is identical to model (1). The

second model assumes that

Q(τ, yij |x1ij , x2j , vj) =β0,j(τ) + x′1ijβj(τ) (25)

β0,j(τ) =x′2jγ(τ) + α(τ, vj). (26)

Compared to model (1), the coefficient on x1ij is allowed to vary over j, and the between

variation in x2j might be endogenous. They suggest a two-step estimator. The first stage

consists of regressing yij on x1ij and a constant using quantile regression separately for each

group j and quantile τ . In the second stage, they regress the intercept from the first stage on

x2j . Their estimator focuses on estimating γ(τ) and does not directly estimate β(τ).

The main difference between the two estimators is that CLP use the estimated intercept of the

first stage (i.e., fitted values evaluated at x1ij = 0) as a dependent variable in the second stage.

Thus, the CLP estimator is consistent for the quantile treatment effect at x1ij = 0. We discuss
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this parameter in more detail below. A linear reparametrization of the individual-level variable

changes the intercept so that the CLP estimator is not invariant to linear transformations of the

individual-level covariates.

Further, the CLP estimator might have lower precision than the MD estimator. (i) It only

includes the individual level covariates x1ij in the first stage. Thus, it does not exploit (poten-

tially exogenous) variation in the individual-level covariates between groups. (ii) It does not

impose equality of the βj(τ) in the first stage. Additionally, the estimator might extrapolate the

intercept in the first stage, making it more vulnerable to misspecification and estimation error

in finite samples.

Figure 1 illustrates these issues. The figure shows two groups from two different samples.

Each Panel shows an estimated first-stage regression line (solid blue line) and the true regression

line (dashed red line). Both panels show that if the support of the covariates does not cover zero

in all groups, the intercept is extrapolated. As shown in Panel (a), a small estimation error in

the slope parameter can lead to large estimation errors in the intercept. Further, the value of the

(true) intercept and its estimation error change with the reparametrization of the individual-level

covariates so that reparametrization leads to different results. If the first stage slopes are allowed

to change over groups, reparametrization of the covariates changes the estimand. By imposing

equality of the slopes across groups, our estimator becomes invariant to reparametrizations of

the covariates. Similarly, when x1it contains discrete variables, if some groups do not contain

any observations in the base category or if some variables exhibit variation only within some

group, the interpretation of the intercept changes over groups. Panel (b) shows how model

misspecification in the first stage can lead to a large estimation error with the CLP estimator.

The model is misspecified, as it fits a linear regression model instead of a quadratic one. The

consequences of misspecification are substantially larger outside the support of the covariates,

e.g., at x1ij = 0. In comparison, the misspecification error in the fitted values is negligible.

Now we consider both estimators in the context of models (1) and model (25)-(26). If model

(1) is correct, our estimator will, in general, outperform the CLP estimator for the reasons listed

above. Further, imposing equality also makes the estimator invariant to reparametrizations of

the individual-level variables. For this model, the CLP estimator is consistent for the treatment

effect at x1ij = 0, which equals the quantile treatment effects. We obtain a more precise

estimator by estimating all the parameters simultaneously and imposing all the assumptions.

On the other hand, if the model (25)-(26) is correct, we should not exploit the between-variation

in the individual-level variables and use the demeaned individual-level regressors as instruments.

If the slopes are systematically correlated with the treatment variable, the treatment effect is

heterogeneous, and CLP estimates the quantile treatment effects at x1ij = 0, which may not

be particularly interesting. In such a case, one could parametrize the treatment effect on the

random slope and estimate the effect on the intercept and the effect on the slope separately. In

a second step, combining both estimates gives, for instance, an average (in x1ij) QTE. Using
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our approach, we estimate the best linear approximation of the treatment effect, and we can

also allow for heterogeneous effects by including interaction terms between x1ij and x2j .

We want to show that asymptotically our estimator has lower variance than the CLP es-

timator uniformly over different values of Var(z̄jαj(τ)).
30 From section 3 we know that the

variance comprises two terms, one that accounts for first-stage error and the other accounts for

the second-stage noise. The sum of these two terms determines the asymptotic behavior of the

estimator. Thus, to show that our MD estimator is more precise, it suffices to show that both

components of the variance are smaller. If Var(z̄jαj(τ)) = 0, there is no second stage noise, both

estimators converge at the
√
mn rate, and only the variance coming from the first stage matters.

On the other hand, if Var(z̄jαj(τ)) > ε > 0, both estimators converge at the
√
m rate, and the

variance coming from the first stage does not enter the first-order asymptotic distribution. Thus,

in the latter case, we will consider the estimators as if we knew the true first stage.

In the following, we assume that the more widely used model (1) is correct and focus on

a case with exogenous regressors. We consider our MD estimator implemented using optimal

instruments, as this estimator simultaneously minimizes both components of the variance. To

apply optimal instruments, we need to impose the stronger assumption that E[αj(τ)|Xj ] = 0.

Below, we provide some results without this assumption.

First, we consider the variance arising from the first stage, which shows up in the first-order

asymptotic distribution of δ̂1(τ). To study this part of the variance, we can assume, without

loss of generality, that ḡ
(2)
mn(δ̂, τ) = 0. The optimal instrument is Z∗

j =
(
X̃jVj(τ)X̃

′
j

)+
Xj , which

yields an estimator that is algebraically identical to the efficient minimum distance estimator

(see Proposition 6). Remark 6 provides the minimum distance representation of our estimator.

The CLP estimator can also be written as a minimum distance estimator that minimizes

1

m

m∑
j=1

(
β̂j(τ)− R̃jδ(τ)

)′ (
β̂j(τ)− R̃jδ(τ)

)
, (27)

where

R̃j
(K1+1)×(K1·m+K2)

=

(
x′2j 0

0 l′j ⊗ IK1

)
,

and lj is a m-dimensional vector of zeros with a 1 in the j position. The restriction matrix R̃j

is different from the restriction matrix of our estimator, as it does not impose equality of the

first stage coefficients implied by the model. Further, CLP use an identity weighting matrix so

that their estimator is inefficient relative to an efficient MD estimator with restriction matrix

R̃j . Since our estimator imposes the additional (correct) restriction, our efficient MD estimator

has a smaller variance than any alternative (efficient) MD estimator with restriction matrix R̃j ,

including the CLP estimator. In the special case of quantile independence, the weighting matrix

of the efficient MD estimator reduces to Ŵj = X̃ ′
jX̃j , which corresponds to using OLS in the

30The asymptotic results in Chetverikov et al. (2016) implicitly assume that Var(z̄jαj(τ)) > ε > 0 so that their
estimator converges at the

√
m rate.
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second stage. In this case, our estimator with a least squares second stage is efficient and will

have a lower variance than the CLP estimator.

Next, we focus on the component of the variance coming from the second-stage error. For this

term, we can assume that we know the true first stage. We start by noting that we numerically

obtain the CLP estimator by regressing the first stage fitted values on x2j , x1ij · d1, . . . , x1ij · dm
with instruments x2j , ẋ1ij ·d1, . . . , ẋ1ij ·dm where dj is a group indicator. In the special case where

we know the true first stage, we can recover the CLP point estimates if we regress the fitted values

on x1ij and x2j with instruments ẋ1ij and x2ij without the interactions. From this representation,

it is clear that the CLP estimator only exploits the within variation of x1ij . Differently, our

estimator uses the entire variation of x1ij efficiently. If we know the true first stage, the optimal

instrument implied by the conditional moment restriction is Z∗
j = E[αj(τ)

2|Xj ]
−1Xj , which

implies that our second stage is a GLS regression which is efficient.

One backdrop of this analysis is that it relies on the stronger conditional moment restric-

tion E[αj(τ)|Xj ] = 0. Nonetheless, we can show that regardless the value of Var(z̄jαj(τ)),

we can implement an estimator that is more precise than the CLP estimator. More pre-

cisely, if Var(z̄jαj(τ)) = 0 for all j, the efficient minimum distance is optimal. Differently,

if Var(z̄jαj(τ)) > ε > 0 using an efficient GMM estimator with instruments ẋ1ij , x̄1j , x2j yields

more precise point estimates as it exploits all moment conditions efficiently. This GMM esti-

mator exploits the between variation of x1ij by including x̄ij in the instrument set. By adding

an instrument, asymptotically, our estimator will have a weakly lower variance (see Proposition

4.51 in White, 2001).

5.2 Simulations

This subsection presents Monte Carlo simulations comparing the MD and CLP estima-

tors. The simulations are based on the same data generating process and sample sizes as in

Chetverikov et al. (2016). That is, (m,n) = {(25, 25), (200, 25), (25, 200), (200, 200)}. For both

estimator we use a OLS (or 2SLS) second stage. The generated data include one individual-

level regressor, one group-level regressor, and one instrument. Heterogeneity is introduced via

a rank variable uij . Since the effect of the individual-level covariates is constant across groups,

βj(τ) = (βj,0(τ), βj(τ)
′)′ = (βj,0(τ), β(τ)

′)′, where βi,0(τ) is the constant of the first stage. The

data is generated as follows:

yij = β0(uij) + x1ijβ(uij) + x2jγ(uij) + αj(uij), (28)

zj = x2j + ηj + νj , (29)

αj(uij) = uijηj −
uij
2
, (30)

where x1ij , x2j and νj are distributed exp(0.25·N [0, 1]) and ηj as well as the rank variable uij are

U [0, 1] distributed. The data generating process implies that E[α(uij)|x2j ] = E[uijηj− uij

2 |x2j ] =
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E[uij

2 − uij

2 |x2j ] = 0. At quantiles τ ∈ (0, 1), the true parameters γ(τ) and β(τ) equal
√
τ and,

α1(τ) =
τ
2 . Consequently, γ(uij) = β(uij) =

√
uij and β0(uij) =

uij

2 .

The simulations consider three cases. In the first one (baseline), αj(τ) = 0 for all j and all

Baseline Exogenous Endogenous

Quantile MD CLP Rel. MSE MD CLP Rel. MSE MD CLP Rel. MSE

(m, n) = (25, 25)
0.1 0.022 -0.011 0.051 0.022 -0.010 0.052 0.049 0.001 0.404

(0.192) (0.858) (0.195) (0.860) (3.218) (5.062)
0.5 -0.010 -0.001 0.061 -0.011 0.000 0.088 -0.017 0.039 0.318

(0.166) (0.673) (0.204) (0.691) (3.098) (5.491)
0.9 -0.019 -0.003 0.049 -0.020 -0.004 0.216 -0.052 -0.011 0.409

(0.094) (0.435) (0.227) (0.490) (3.239) (5.065)

(m, n) = (200, 25)
0.1 0.024 0.003 0.060 0.024 0.004 0.063 0.023 0.006 0.057

(0.066) (0.284) (0.067) (0.285) (0.106) (0.456)
0.5 -0.006 -0.001 0.059 -0.006 0.000 0.086 -0.009 -0.003 0.071

(0.056) (0.232) (0.069) (0.238) (0.097) (0.366)
0.9 -0.017 -0.004 0.060 -0.017 -0.003 0.223 -0.022 -0.009 0.142

(0.031) (0.145) (0.075) (0.164) (0.086) (0.234)

(m, n) = (25, 200)
0.1 0.003 -0.002 0.059 0.003 -0.001 0.066 -0.027 -0.076 0.130

(0.070) (0.289) (0.074) (0.291) (2.025) (5.618)
0.5 -0.001 -0.002 0.060 -0.001 -0.001 0.233 -0.082 -0.094 0.580

(0.060) (0.247) (0.134) (0.278) (3.485) (4.575)
0.9 -0.002 0.000 0.061 -0.001 0.001 0.769 -0.118 -0.114 1.126

(0.030) (0.121) (0.217) (0.247) (3.780) (3.561)

(m, n) = (200, 200)
0.1 0.003 -0.003 0.057 0.003 -0.003 0.062 0.002 -0.004 0.058

(0.024) (0.100) (0.025) (0.101) (0.039) (0.162)
0.5 -0.001 0.000 0.059 -0.001 -0.001 0.222 -0.004 -0.004 0.141

(0.020) (0.084) (0.044) (0.093) (0.051) (0.136)
0.9 -0.002 0.000 0.067 -0.003 -0.001 0.762 -0.009 -0.007 0.617

(0.010) (0.040) (0.071) (0.082) (0.074) (0.095)

Note:
The table reports mean bias, standard deviation and relative MSE from the simulations for γ(τ) from 10000
Monte Carlo simulations using the MD estimator and the CLP estimator. The relative MSE gives the MSE
of the MD estimator relative to that of the CLP estimator.

Table 4: Bias, Standard Deviation and MSE of γ̂(τ)

τ . In this case, conditioning on the individual does not affect the quantile function and quantile

regression is consistent for the same parameter. Further, as αj(τ) = 0, the estimators with

a least square second stage are
√
mn-consistent. In the second case, there are group-specific

effects (αj(τ) ̸= 0), which are uncorrelated with the regressors. The individual heterogeneity is

multiplied with the rank variable uij . Thus, in the lower tail of the distribution, we see a faster

convergence rate. In the third case, αj(τ) is correlated with the regressor of interest, such that

x2j is endogenous. In this case, we use 2SLS in the second stage. Since the data generating

process of Chetverikov et al. (2016) has a weak instrument when m is small, one should pay
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Baseline Exogenous Endogenous

Rel. length Coverage Rate Rel. length Coverage Rate Rel. length Coverage Rate

Quantile MD/CLP MD CLP MD/CLP MD CLP MD/CLP MD CLP

(m, n) = (25, 25)
0.1 0.232 0.941 0.938 0.235 0.939 0.938 0.227 0.966 0.972
0.5 0.244 0.940 0.942 0.301 0.942 0.945 0.262 0.964 0.972
0.9 0.223 0.942 0.949 0.501 0.940 0.946 0.373 0.957 0.972

(m, n) = (200, 25)
0.1 0.230 0.932 0.947 0.233 0.932 0.948 0.230 0.942 0.953
0.5 0.245 0.947 0.944 0.296 0.945 0.946 0.267 0.952 0.949
0.9 0.220 0.925 0.947 0.475 0.941 0.945 0.368 0.953 0.952

(m, n) = (25, 200)
0.1 0.241 0.943 0.940 0.256 0.943 0.943 0.240 0.968 0.974
0.5 0.242 0.937 0.944 0.496 0.938 0.944 0.370 0.949 0.971
0.9 0.248 0.948 0.941 0.884 0.934 0.945 0.771 0.939 0.955

(m, n) = (200, 200)
0.1 0.241 0.944 0.944 0.254 0.947 0.945 0.246 0.951 0.950
0.5 0.244 0.946 0.945 0.483 0.952 0.948 0.377 0.957 0.951
0.9 0.246 0.942 0.953 0.872 0.950 0.950 0.772 0.954 0.955

Note:
Results based on 10000 Monte Carlo simulations. The table provides the coverage rate and median
length of the confidence intervals of γ(τ). The relative length provides the length of the confidence
interval of the MD estimator relative to that of the CLP estimator. Robust standard errors are used for
the CLP estimator, and clustered standard errors at the group level are used for the MD estimator.

Table 5: Properties of the 95% Confidence Intervals

attention when looking at the simulation results for the endogenous case.31 In empirical research,

it is straightforward to construct confidence intervals that remain valid even if identification is

weak. We perform 10,000 Monte Carlo replications for the set of quantiles τ ∈ {0.1, 0.5, 0.9}.
Since the CLP estimator does not directly provide an estimate for β(τ), we present only results

for γ(τ).

Table 4 reports the bias, standard deviation and relative MSE of the estimators. The relative

MSE reports the MSE of the MD estimator relative to that of the CLP estimator. Thus, a

number smaller than 1 indicates that the MD estimator has a lower MSE. The CLP estimator

seems to have a smaller bias than the MD estimator when n = 25. When n increases to

200, the difference disappears. There are more remarkable differences in the variance of the

estimators. The standard deviation of the MD estimator is four times smaller compared to that

of the CLP estimator in the baseline case. The difference is somewhat smaller in the exogenous

and endogenous cases but remains substantial.32 This difference in precision explains the large

discrepancies in MSE. The MSE of the CLP estimator is over 10 times larger than that of the

MD estimator when αj(τ) = 0 and remains substantially larger in all scenarios considered. If

31With m = 25 in over 40% of the draws, the F-statistics of the first stage of the 2SLS estimations is below 10.
The issue disappears when m = 200.

32The standard deviations in the endogenous case with m = 25 should be interpreted with caution due to the
weak instrument.
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αj(τ) = 0, quantile regression is a consistent estimator for β(τ). Although not shown here,

simulation results comparing our estimator with traditional quantile regression show that the

two estimators are indistinguishable in terms of bias and variance in large samples.

Table 5 show the performance of the 95% confidence intervals suggested with our inference

procedure. The table reports the coverage rate of the confidence intervals and the median length

of the confidence interval of our estimator relative to that of the CLP estimator. Our suggested

inference procedure has coverage close to 95% in all cases. Compared to the CLP estimator,

our confidence bands are substantially shorter. In most cases, our estimator yields confidence

bands less than half the length of those for the CLP estimator.

6 Empirical Application: The Effect of the Food Stamps Pro-
gram on Birth Weight

In this section, we apply our minimum distance approach to estimate the impact of the

food stamp program on the birth weight distribution using grouped data. We complement the

analysis of Almond et al. (2011) by providing distributional effects. Food stamps constitute

an important means-tested program that gives entitled households coupons they can redeem at

approved retail food stores. The Food Stamp Act (FSA) was introduced in 1964 and enabled

counties to start their own federally funded food stamp program (FSP). In the subsequent

years, counties increasingly adopted such programs, and in 1973, an amendment to the FSA

required all counties to establish a FSP by 1975. Thus, the share of counties with an FSP

increased steadily from 1964 to 1974, and identification exploits the variation in the timing of

the adoption across counties. Almond et al. (2011) use data from 1968 (when about 40% of

the counties had introduced the program) to 1977 (two years after the FSP was implemented

everywhere) to analyze the effect of the program.

Given the negative consequences of low birth weight, besides estimating the effect of the

policy on average weight, Almond et al. (2011) estimate the effect on the probability that

birth weight falls below a certain threshold. As discussed in Melly and Santangelo (2015) this

procedure leads to biased results unless there is no time effect or group effect, or the outcome is

uniformly distributed.

In this section, we use the subscripts i, c, and t to denote the birth, the county, and the

trimester of birth, respectively.33 The variable of interest is a binary variable that is coded 1 if

there was a food stamp program in place three months before birth. The treatment is assigned

to county-month cells, and in around 1% of cases, it also varies within groups.

We consider the following model separately for blacks and whites:

Q(τ, bwict|fspct, x1ict, x2ct, vct) = fspctγ1(τ) + x1ictβ(τ) + x2ctγ2(τ) + α(τ, vct), (31)

33Using the same notation as in the paper, the j units are county-trimester combinations, and the i units index
individual births within a county in a given trimester. In this section, we use three subscripts for clarity.
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whereQ(τ, bwict|fspct, x1ict, x2ct, vct) is the conditional quantile function of the outcome given

all the variables. fspct is a variable indicating whether there is a food stamp program in

place, x1ict are variables related to the individual births, such as gender, mother age, and its

square as well as the legitimacy status of the birth. Group level control variables x2ct include

annual county-level controls (real per capita income, government transfers to individuals, medical

spending, and retirement and disability payments) and 1960 county-level characteristics (county

population and the shares of urban population, black population, and of farmland) interacted

with a linear time trend. Further, x2j also includes county, state-year fixed effects, and time

fixed effects.

Figure 2 illustrates the results. For the estimation, we drop groups that have less than 20

degrees of freedom.34 The estimations are performed using a sample of 2,822,091 individual

observations divided into 19,482 groups for blacks and 16,038,235 individual births divided into

80,289 groups in the sample of whites.35 The results for black are in the left panel, while the

results for whites are in the right panel. As shown, the effect is substantially larger among

blacks. The results suggest a positive effect of the food stamp program on the lower tail of the

conditional distribution. The estimates suggest that the food stamp program is associated with

an increase in birth weight by almost 30 grams for blacks at the 5th percentile of the conditional

distribution. For whites, there seems to be an effect only at the left tail of the distribution, and

the effects are small. For blacks, the coefficients are large in the left tail and remain positive,

albeit of small magnitude, until the 75% percentile. However, for higher quantiles, the effects

are not statistically different from zero.

7 Conclusion

This paper suggests a MD estimator for quantile panel data models. The estimator is of

practical relevance with classical panel data settings where the units are observed over time

and with grouped data, where individuals are divided into groups, and the treatment varies

at the group level. The coefficient on the individual-level and group-level variables can be

estimated. The estimator is computationally fast and straightforward to compute and consists

of a first stage individual level quantile regressions, followed by a GMM regression with the

fitted values as the dependent variable. We show that our two-step procedure applied to linear

estimators is algebraically identical to traditional one-step estimators. We suggest a quantile

counterpart to traditional panel data estimators, including the pooled, the fixed effects, and the

random effects estimators. In the second stage, both internal and external instruments can be

34Essentially, if there are K1 individual level variables we drop all groups with less than K1+1+20 observations.
Since some variables might vary at the individual level in some groups only, this threshold is group specific.

35We have a different number of groups compared to Almond et al. (2011) due to multiple reasons. First, they
give higher weights to births in groups where only 50% of the births are included in the natality data; thus, when
they drop groups with less than 25 births, the number of births in these groups is inflated. Second, since they
take the group average, they keep births with missing values for birth weight. We drop those births as we work
with individual-level data.
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Figure 2: Impact of Food Stamp Introduction on the Distribution of Birth Weight

The figure shows the impact of the food stamp introduction on the conditional distribution of birth weight. The
panels show point estimates and 95% confidence bands (shaded area) computed using standard errors clustered
at the county level. The panel on the left (right) shows the effects for blacks (whites). The regressions include
county, time, and state-year fixed effects.

used in a Hausman and Taylor or traditional instrumental variables framework. Further, an

overidentification test can be implemented if the model is overidentified.

The asymptotic distribution of the estimator is non-standard because the speed of conver-

gence is not the same for all coefficients. The speed of convergence depends on the moment

conditions that are used to identify a parameter. For the coefficient converging at the faster

(
√
mn) rate, only the variance coming from the first stage enters the first-order asymptotic dis-

tribution. On the other hand, since n diverges to infinity, the first stage variance does not appear

in the first-order asymptotic variance of the coefficients converging at the slower (
√
m) rate. In

other words, the first-order asymptotic distribution is the same as if we knew the true first stage.

We suggest an inference procedure that is uniformly valid regardless of the convergence rate of

the estimator and, importantly, takes the first stage variance into account, thus providing better

inference. Monte Carlo simulations show that our estimator and the suggested standard errors

perform well in finite samples. Compared to the grouped estimator of Chetverikov et al. (2016),

the MD estimator has a much smaller MSE. Finally, in an empirical application, we study the

effect of the food stamp program on birth weight, and we find positive effects for blacks in the

lower tail of the conditional distribution.
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A Least Squares Panel Data Models

A.1 Formal results

This section complements subsection 2.3 by discussing more in detail the relationship between

least squares estimator and the minimum distance approach. Throughout the section, we define

the n×(K1+1) matrix of first-stage regressors X̃1j = (x̃j , x̃i2, . . . , x̃ij)
′, and the mn×K1 matrix

of individual-level regressors X1 = (X ′
1j , . . . , X

′
1N )′. Further, we use the matrices Pj = l(l′l)−1l′

and Qj = Ij − Pj , where l is a n × 1 vector of ones. Thus, PjXj = X̄j and QjX1j = Ẋj . We

consider a linear version of our estimator, where OLS instead of quantile regression is used in the

first stage. We consider model (9). In this section, we show that mean models can be estimated

using a two-step procedure. Notation is the same as in the paper, except that the fitted values

are computed using an OLS regression. More precisely, the vector of fitted values of group j is

Ŷj = X̃j β̂j = X̃j

(
X̃ ′

jX̃j

)−1
X̃ ′

jYj .

The following Proposition states the equivalence of the two-step procedure using the fitted

values and the conventional one-step estimator in mean models.

Proposition 3. Denote δ̂MD
GMM the coefficient vector of a linear GMM regression of Ŷ on X

with instrument Z. Let δ̂GMM be the coefficient vector of the same GMM regression but with

regressand Y . If X̃j lies in the column space of Zj, δ̂
MD
GMM = δ̂GMM .

The proof of this Proposition and all subsequent proofs are in Appendix A.2. Proposition 3

implies that any linear model can be computed by a two-step estimator as long as the matrix

of instruments of group j, Zj lies in the column space of the matrix of first-stage regressors of

group j, X̃j .
36 This result applies to a wide range of estimators. Since OLS is a special case

of GMM, the result for pooled OLS follows directly, while the result for the within estimator is

summarized in the following Corollary.

Corollary 1. Denote δ̂MD
FE the coefficient vector of a 2SLS regression of Ŷ on X̃ with instru-

ments Ẋ1. Let δ̂FE be the coefficient vector of the within estimator, that is, of a regression of Ẏ

on Ẋ1. Then δ̂MD
FE = δ̂FE.

The between estimator is usually computed by regressing Ȳ on X̄. Alternatively, it can be

estimated by an IV regression of Y (or Ŷ ) on X using X̄ as an instrument, where it exploits

only the variation between individuals.

Corollary 2. Denote δ̂MD
BE the coefficient vector of a 2SLS regression of Ŷ on X with instru-

ments X̄. Let δ̂BE be the coefficient vector of the between estimator, that is, of a regression of

Ȳ on X̄. Then δ̂MD
BE = δ̂BE.

36Since X̃j includes a constant, the presence of group-level variables in Zj will not affect its column space.
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It is worth noting that the IV approach to these panel data estimators also works in one

stage with Y as the dependent variable. Further, it is possible to estimate between (within)

models using average (demeaned) fitted values and regressors.

The pooled OLS and the between estimators can estimate both β and γ but are not efficient. The

random effects estimator optimally combines between and the within variation to find a more

efficient estimator. While FGLS is the most common estimator for the random effects model,

Im et al. (1999) show that the overidentified 3SLS estimator, with instruments Zj = (Ẋ1j , X̄j),

is identical to the random effects estimator. The 3SLS estimator is a special case of GMM with

weighting matrix W = E[Z ′
jΩ̃Zj ] where Ω̃ follows the usual random effects covariance structure.

Thus, by Proposition 3, the random effects estimator can also be computed in two steps using

the fitted values in the second stage.

Corollary 3. Denote δ̂MD
RE the coefficient vector of a 3SLS regression of Ŷ on X with instru-

ments (Ẋ1j , X̄j). Let δ̂RE be the coefficient vector of a random effects regression of Y on X.

Then δ̂MD
RE = δ̂RE.

Alternatively, the random effects estimator can be implemented using the theory of opti-

mal instruments and a just identified 2SLS regression. Starting from a conditional moment

restriction, the idea of optimal instruments is to select an instrument and weights that minimize

the asymptotic variance (see, e.g. Newey, 1993). Relevant to our two-step procedure, under ho-

moskedasticity of the errors, the conditional moments E[Yj−Xjδ|Xj ] = 0 and E[Ŷj−Xjδ|Xj ] = 0

imply the same optimal instrument:

Proposition 4. Assume E[ε2ij |Xj ] = σ2
ε and E[α2

j |Xj ] = σ2
α. The conditional moments E[Ŷj −

Xjδ|Xj ] = 0 and E[Yj −Xjδ|Xj ] = 0 imply the same optimal instrument.

The Hausman-Taylor model (Hausman and Taylor, 1981) is a middle ground between the

fixed effects and the random effects models where some regressors are assumed to be uncorrelated

with αj . In contrast, no restriction is placed on the relationship between the other regressors and

the unobserved heterogeneity. The matrix of regressors X is partitioned as X = [Xx
1 Xn

1 Xx
2 Xn

2 ]

where Xx
1 and Xx

2 are orthogonal to αj . No assumption is placed on the relationship between αj

and Xn
1 and Xn

2 . The model can be estimated by IV using instruments Z = (Ẋx
1 , Ẋ

n
1 , X̄

x
1 , X

x
2 )

(see, e.g., Hansen, 2022). Thus, it follows by Proposition 3 that the Hausman-Taylor model can

be estimated in two stages.

Corollary 4. Denote δ̂MD
HT the coefficient vector of a 2SLS regression of Ŷ on X with instru-

ments (Ẋx
1 , Ẋ

n
1 , X̄

x
1 , X

x
2 ). Let δ̂HT be the coefficient vector of the Hausman Taylor Estimator

based on a regression Y on X. Then δ̂MD
HT = δ̂HT .

Finally, we show that not only the point estimates but also the standard errors can be

obtained using the two-stage minimum distance approach. This requires clustering the standard

errors in the second stage at a level weakly higher than the individual i. Let g = 1, . . . , G index

41



the clusters and assume that each of the clusters has Ng observations. This nests the case where

one wishes to cluster at the individual level or at a higher level. For example, if i are county-year

combinations, one might cluster at the county level. For an estimator δ̂ the clustered covariance

matrix is estimated by

V̂δ =

 1

G

G∑
g=1

X ′
gZgŴ

1

G

G∑
g=1

Z ′
gXg

−1

1

G

G∑
g=1

X ′
gZgŴ

 1

G

G∑
g=1

Z ′
gũgũ

′
gZg


· Ŵ 1

G

G∑
g=1

Z ′
gXg

 1

G

G∑
g=1

X ′
gZgŴ

1

G

G∑
g=1

Z ′
gXg

−1

,

where ũg is a Ng-dimensional vector of estimated errors for the observations in cluster g.

Proposition 5. Denote V̂δ the clustered covariance matrix of δ̂ estimated by a GMM regression

of Y on X with instrument Z. Let V̂δMD be the clustered covariance matrix of δ̂MD estimated by

GMM regression of Ŷ on X with instrument Z, where Ŷ are estimated by an OLS first-stage.

Let the clusters be at weakly higher level than i. Then, V̂δMD = V̂δ.

A.2 Proofs of the least squares results

Proof of Proposition 3. Define the projection matrix P̃ = X̃j(X̃
′
jX̃j)

−1X̃ ′
j . Since Zj is in the

column space of X̃j ,

P̃Zj = Zj (32)

The MD estimator with a GMM second stage is:

δ̂MD
GMM =

(
X ′ZŴZ ′X

)−1
X ′ZŴZ ′Ŷ .

For δ̂MD
GMM to be equal to δ̂GMM , it suffices that Z ′Ŷ = Z ′Y . Note that

Z ′Ŷ =

m∑
j=1

Z ′
j Ŷj

=

m∑
j=1

Z ′
jX̃j β̂j

=
m∑
j=1

Z ′
jX̃j(X̃

′
jX̃j)

−1X̃ ′
jYj

=
m∑
j=1

(P̃Zj)
′Yj

=

m∑
j=1

Z ′
jYj = Z ′Y ,

where the third line uses Ŷj = X̃j β̂j , the fourth line uses the definition of the OLS estimator

in the first stage and the last line uses equation (32). Thus, it follows directly that δ̂MD equals

δ̂GMM . ■
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Proof of Corollary 1. First, note that since QjX1j = Ẋ1j , Ẋ1j lies in the column space of X1j .

Then, we apply Proposition 3 and since K = L, the 2SLS estimator reduces to the IV estimator.

It follows that a 2SLS (or IV) regression of Ŷ on X1j with instrument Zj is algebraically identical

to a 2SLS regression with Yj as dependent variable. Then,

δ̂MD
FE =

 m∑
j=1

Z ′
jX1j

−1
m∑
j=1

Z ′
jYj

=

 m∑
j=1

Ẋ ′
1jX1j

−1
m∑
j=1

Ẋ ′
1jYj

=

 m∑
j=1

X ′
1jQjX1j

−1
m∑
j=1

X ′
1jQjYj

=

 m∑
j=1

Ẋ ′
1jẊ1j

−1
m∑
j=1

Ẋ ′
1j Ẏj = δ̂FE ,

where the second line follows since Zj = Ẋ1j , the third and last line by QjX1j = Ẋ1j , QjYj = Ẏj

and since Qj is idempotent. ■

Proof of Corollary 2. First, note that since PjX̃j = X̄j , X̄j lies in the column space of X̃j .

Then, we apply Proposition 3 and since K = L, the 2SLS estimator reduces to an IV estimator.

It follows that a 2SLS regression of Ŷj on Xj with instrument Zj is algebraically identical to a

2SLS regression with Yj as dependent variable. Then,

δ̂MD
BE =

 m∑
j=1

Z ′
jXj

−1
m∑
j=1

Z ′
jYj

=

 m∑
j=1

X̄ ′
jXj

−1
m∑
j=1

X̄ ′
jYj

=

 m∑
j=1

X ′
jPjXj

−1
m∑
j=1

X ′
jPjYj

=

 m∑
j=1

X̄ ′
jX̄j

−1
m∑
j=1

X̄ ′
j Ȳj = δ̂BE

where the second line follows since Zj = X̄j , the third and last line by PjXj = X̄j , PjYj = Ȳj

and, since Pj is idempotent. ■

Proof of Proposition 4. The optimal instrument takes the form Z∗
j = E[gj(δ)gj(δ)′|Zj ]

−1Rj(δ, τ),

where Rj(δ, τ) = E[ ∂∂δgj(δ, τ)|Zj ]. For both moment conditions, Rj(δ, τ) is identical. Then for
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the first moment restriction, we have:

E[(Ŷj −Xjδ)(Ŷj −Xjδ)
′|Xj ] = E[(X̃j(β̂j − β) + X̃jβ −Xjδ)(X̃j(β̂j − β) + X̃jβ −Xjδ)

′|Xj ]

(33)

= E[(X̃j(β̂j − β) + αj)(X̃j(β̂j − β) + αj)
′|Xj ]

= X̃j
Vj

n
X̃ ′

j + lnl
′
nσ

2
α.

The matrix X̃j
Vj

n X̃ ′
j + lnl

′
nσ

2
α is singular, so that we suggest using the Moore-Penrose inverse to

construct the optimal instrument.

For the second moment restriction, we have:

E[(Yj −Xjδ)(Yj −Xjδ)
′|Xj ] = E[(αj + εij)(αj + εij)

′|Xj ]

=
(
Inσ

2
ε + lnl

′
nσ

2
α

)
.

Then note that
(
Inσ

2
ε + lnl

′
nσ

2
α

)−1
= (X̃jX̃

+
j σ2

ε + l′nlnσ
2
α)

+ = (X̃j(X̃
′
jX̃j)

−1X̃ ′
jσ

2
ε + l′nlnσ

2
α)

+ =

(X̃j
Vj

n X̃ ′
j + l′nlnσ

2
α)

+Xj , where Vj = ( 1nX̃
′
jX̃j)

−1σ2
ε and since for a full column rank matrix X̃j ,

X̃jX̃
+
j = In and X̃+

j = (X̃ ′
jX̃j)

−1X̃ ′
j . ■

Proof of Proposition 5. Define Zg = (z1g, . . . , zngg)
′, Xg = (x1g, . . . , xngg)

′, Yg = (y1g, . . . , yngg)
′

and Ŷg = (ŷ1g, . . . , ŷngg)
′. The first and third terms of the expression are identical for both

estimators. Thus, we focus on the middle term. Let ûg = Yg −Xg δ̂ be the vector of residuals

from the regression using Y as dependent variable, and let ûMD
g = Ŷg −Xg δ̂

MD be the vector of

residuals of the estimator using the fitted values as regressand. We show that Z ′
gûg = Z ′

gû
MD
g for

all g. By Proposition 3, δ̂MD = δ̂. Thus, the fitted values of both estimators are identical. Next,

define X̆g = diag{x̃1g, . . . , x̃ngg} and recall that regressing Yg on X̆g is the same as performing

G separate regressions. Let β̆g be the coefficient vector of a OLS regression of Yg on X̆g. Note

that Zg is in the column space of X̃g. Define the projection matrix P̆ = X̆g(X̆
′
gX̆g)

−1X̆ ′
g. Since

Zj is in the column space of X̆g,

P̆Zg = Zg. (34)

Then,

Z ′
gû

MD
g = Z ′

g

(
Ŷg −Xg δ̂

MD
)

= Z ′
gX̃gβ̆g − ZgXg δ̂

= Z ′
gX̃g(X̆

′
gX̆g)

−1X̆ ′
gYg − ZgXg δ̂

= Z ′
g(Yg −Xg δ̂) = Z ′

gûg,

where the fourth line follows by (34). Since this holds for all g, the desired result follows directly.

■
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B Proofs of the asymptotic results

B.1 Proof of Lemma 1

Proof of lemma 1. Starting from the definition of the estimator we obtain

δ̂(τ) =
(
X ′ZŴ (τ)Z ′X

)−1
X ′ZŴ (τ)Z ′ŷ(τ)

=
(
S′
ZXŴ (τ)SZX

)−1
S′
ZXŴ (τ)

1

mn

m∑
j=1

n∑
i=1

zij x̃
′
ij β̂j(τ)

=
(
S′
ZXŴ (τ)SZX

)−1
S′
ZXŴ (τ)

1

mn

m∑
j=1

n∑
i=1

zij

(
x̃′ij

(
β̂j(τ)− βj(τ)

)
+ x̃′ijβj(τ)

)
=
(
S′
ZXŴ (τ)SZX

)−1
S′
ZXŴ (τ)

1

mn

m∑
j=1

n∑
i=1

zij

(
x̃′ij

(
β̂j(τ)− βj(τ)

)
+ x′ijδ(τ) + αj(τ)

)
= δ(τ) +

(
S′
ZXŴ (τ)SZX

)−1
S′
ZXŴ (τ)

1

mn

m∑
j=1

n∑
i=1

zij

(
x̃′ij

(
β̂j(τ)− βj(τ)

)
+ αj(τ)

)
.

■

B.2 Proofs of Theorems 1 and 1′

As a preliminary step to prove the uniform consistency of our estimator, we show uniform

(in τ and j) consistency of the group-level quantile regressions.

Lemma 3 (Uniform consistency of β̂j(τ)). Under Assumptions 1-4 and 8(a), we have

sup
τ∈T

max
1≤j≤m

∥β̂j(τ)− βj∥ = op(1).

Proof of Lemma 3. Angrist et al. (2006) show uniform consistency in τ but not in j of the

quantile regression estimator (see their Theorem 3) while Galvao and Wang (2015) show uniform

consistency in j but not in τ (see their Lemma 1). We show here uniformity in both dimensions

by following the steps of the proof in Galvao and Wang (2015) and extending it. We define

Qnj(τ, β) := 1
n

∑n
i=1 ρτ (yij − x̃′ijβ) − ρτ (yij − x̃′ijβj(τ)) and Qj(τ, β) := E[ρτ (yij − x̃′ijβ) −

ρτ (yij − x̃′ijβj(τ))]. Angrist et al. (2006) show that the empirical process for each group j is

stochastically equicontinuous because |Qnj(τ
′, β′)−Qnj(τ

′′, β′′)| ≤ C1 · |τ ′ − τ ′′|+C2 · ∥β′ − β′′∥
where C1 = 2 · C · sup

β∈B
∥β∥ for any compact set B and C2 = 2 · C. The constant C is defined in

Assumption 2. Note that C1 and C2 are neither functions of j nor τ .

Fix any δ > 0. Let Bj(δ, τ) := {β : ∥β − βj(τ)∥ ≤ δ}, the ball with center βj(τ) and

radius δ. For each β /∈ Bj(δ, τ), define β̃ = rjβ + (1 − rj)βj(τ) where rj = δ
∥β−βj(τ)∥ . So

β̃ ∈ ∂Bj(δ, τ) := {β : ∥β − βj(τ)∥ = δ}, the boundary of Bj(δ, τ). Since Qnj(β, τ) is convex in

β for all τ , and Qnj(βj(τ), τ) = 0, we have

rjQnj(β, τ) ≥ Qnj(β̃, τ) = Qj(β̃, τ) +Qnj(β̃, τ)−Qj(β̃, τ) > ϵδ +Qnj(β̃, τ)−Qj(β̃, τ) (35)
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uniformly in j and τ , where

ϵδ := inf
τ∈T

inf
1≤j≤m

inf
∥β−βj(τ)∥=δ

E

[∫ x̃′
ij(β−βj(τ))

0

(
1(yij − x̃′ijβj(τ) ≤ s)− 1(yij − x̃′ijβj(τ) ≤ 0)

)
ds

]

by the identity of Knight (1998) and ϵδ > 0 by Assumptions 3 and 4.

Thus, we have the following{
sup
τ∈T

max
1≤j≤m

∥β̂j(τ)− βj(τ)∥ > δ

}
(a)

⊆ {∃τj ∈ T , ∃βj /∈ Bj(δ, τj) : Qnj(βj , τj) ≤ 0}

(b)

⊆ ∪m
j=1

{
sup
τ∈T

sup
βj∈Bj(δ,τj)

|Qnj(βj , τj)−Qj(βj , τj)| ≥ ϵδ

}

Relation (a) holds because, by definition, β̂j(τ) minimizes Qnj(β, τ), and Qnj(βj(τ), τ) = 0.

Relation (b) holds by the rightmost inequality of line (35). Then, it follows that

P

{
sup
τ∈T

max
1≤j≤m

∥β̂j(τ)− βj(τ)∥ > δ

}
≤ P

{
∪m
j=1

{
sup
τ∈T

sup
βj∈Bj(δ,τ)

|Qnj(βj , τ)−Qj(βj , τ)| ≥ ϵδ

}}

≤
m∑
j=1

P

{
sup
τ∈T

sup
βj∈Bj(δτ)

|Qnj(βj , τ)−Qj(βj , τ)| ≥ ϵδ

}

≤ m max
1≤j≤m

P

{
sup
τ∈T

sup
βj∈Bj(δ,τ)

|Qnj(βj , τ)−Qj(βj , τ)| ≥ ϵδ

}

Therefore, if we can show that

max
1≤j≤m

P

{
sup
τ∈T

sup
βj∈Bj(δ,τ)

|Qnj(βj , τ)−Qj(βj , τ)| ≥ ϵδ

}
= o

(
1

m

)
the proof of the lemma will be completed.

Without loss of generality, we assume βj(τ) = 0 for all j and τ ∈ T . Then the balls Bj(δ, τ)

for all j and τ ∈ T are identical and we denote them by B(δ). Because the closed ball B(δ) is

compact, there exist K balls with center βk, k = 1, ...,K, and radius ϵ
3C2

such that the collection

of them covers B(δ). For any ϵ > 0, we can find a finite K that satisfies this condition and is

independent of j and τ . Therefore, for any β ∈ B(δ), there is some k ∈ {1, ...,K} such that

|Qnj(β, τ)−Qj(β, τ)| − |Qnj(β
k, τ)−Qj(β

k, τ)| ≤ |Qnj(β, τ)−Qj(β, τ)−Qnj(β
k, τ) +Qj(β

k, τ)|

≤ |Qnj(β, τ)−Qnj(β
k, τ)|+ |Qj(β, τ)−Qj(β

k, τ)|

≤ C2
ϵ

3C2
+ C2

ϵ

3C2
=

2ϵ

3

uniformly in j and τ ∈ T . The third line is justified by the stochastic equicontinuity of Qnj(β, τ).

It then follows that, for any ϵ > 0,

sup
τ∈T

sup
β∈B(δ)

|Qnj(β, τ)−Qj(β, τ)| ≤ sup
τ∈T

max
1≤k≤K

|Qnj(β
k, τ)−Qj(β

k, τ)|+ 2ϵ

3

46



and

P

{
sup
τ∈T

sup
β∈B(δ)

|Qnj(β, τ)−Qj(β, τ) > ϵ

}
≤ P

{
sup
τ∈T

max
1≤k≤K

|Qnj(β
k, τ)−Qj(β

k, τ)|+ 2ϵ

3
> ϵ

}
= P

{
sup
τ∈T

max
1≤k≤K

|Qnj(β
k, τ)−Qj(β

k, τ)| > ϵ

3

}
≤ sup

τ∈T

K∑
k=1

P
{
|Qnj(β

k, τ)−Qj(β
k, τ)| > ϵ

3

}
For each τ ∈ T , Qnj(β

k, τ) is the sample mean of n i.i.d. terms bounded in absolute values by

2 · C · δ. By Hoeffding’s inequality, it follows that

K∑
k=1

P
{
|Qnj(β

k, τ)−Qj(β
k, τ)| > ϵ

3

}
≤ 2K exp

{
− 2nϵ2

3222C2δ2

}
= 2K exp

{
− nϵ2

18C2δ2

}
= O(exp(−n))

This upper bound is deterministic and not a function of τ such that it also applies to the

supremum over τ . Since logm
n → 0 by Assumption 8(a), it follows that O(exp(−n)) = o(1/m).

■

Proof of Theorem 1. We start from Lemma 1 and show that the last factor converges to zero

while the other factors converge to finite values.

First, it follows from Assumptions 1(ii), 2(i) and 5(i) that Var
(

1
n

∑n
i=1 zijx

′
ij

)
= op

(
1
n

)
and E

[
1
n

∑n
i=1 zijx

′
ij

]
= E[zijx′ij ]. Hence, by Assumption 1(i), Var

(
1
m

∑m
j=1

1
n

∑n
i=1 xijz

′
ij

)
=

op
(

1
mn

)
. By Chebyshev’s inequality,

1

m

m∑
j=1

(
1

n

n∑
i=1

zijx
′
ij − E[zijx′ij ]

)
→
p
0.

In addition, by Assumption 5(iii), m−1
∑m

j=1 E[zijx′ij ] → ΣZX . It follows that

SZX →
p
ΣZX

Uniformly in τ ∈ T , Ŵ (τ) →
p
W (τ) where W (τ) is uniformly continuous. Together with the

boundedness of ΣZX and the invertibility of Σ′
ZXW (τ)ΣZX , it follows that

sup
τ∈T

(
S′
ZXŴ (τ)SZX

)−1
S′
ZXŴ (τ) →

p

(
Σ′
ZXW (τ)Σ′

ZX

)−1
Σ′
ZXW (τ) (36)

By lemma 3, β̂j(τ) is consistent for βj(τ) uniformly in j and τ . Together with the bounded-

ness of xij in Assumption 2(i) and of zij in Assumption 5(i), it follows that

sup
τ∈T

1

mn

m∑
j=1

n∑
i=1

zij x̃
′
ij(β̂j(τ)− βj(τ)) →

p
0. (37)
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By Assumption 5(ii), E[zijαj(τ)] = 0 uniformly in τ . By Assumption 5, Var(zijαj(τ)) is

uniformly bounded. In addition, zij is bounded and αj(τ) is uniformly continuous in τ . Hence,

sup
τ∈T

1

mn

m∑
j=1

n∑
i=1

zijαj(τ) →
p
0. (38)

The result of the proposition follows from equations 36, 37, and 38. ■

When the rates of convergence of the moments are heterogeneous, i.e. when L1 > 0 instru-

ments satisfy Var(z̄1jαj(τ) = 0 and L2 > 0 instruments satisfy Var(z̄1jαj(τ) > 0, then the rates

of convergence of the different elements of the efficient weighting matrix will also be heteroge-

neous. In such a case, depending on the scaling of W (the estimator is invariant to the scaling of

W ), either some elements converge to 0 or other elements diverge to infinity such that Theorem

1 does not apply. However, Theorem 1′ shows that this does not preclude the consistency of the

estimator.

Theorem 1′ (Uniform consistency when the weighting matrix is asymptotically sin-

gular). Let the model in equation (1), Assumptions 1-7, Assumption 8(a) hold. Ŵ (τ) →
p
W (τ)

uniformly in τ ∈ T , where W (τ) is symmetric. For all τ1, τ2 ∈ T , ||W (τ2)−W (τ1)|| ≤ C|τ2−τ1|.
For all τ ∈ T , we partition

W (τ) =

(
W11(τ) W12(τ)
W21(τ) W22(τ)

)
,

where the L1×L1 matrix W11(τ) and the L2×L2 matrix W22(τ) have eigenvalues bounded away

from zero and infinity uniformly across τ . For any element w1 of W11(τ) and any element w2

of W12(τ), W21(τ) or W22(τ), we have w2/w1 = op(1).

Then,

sup
τ∈T

∥δ̂(τ)− δ(τ)∥ = op(1)

Proof of Theorem 1′. The proof is similar to the proof of Theorem 1 except that Σ′
ZXWΣZX is

not necessarily invertible. We partition the matrix ΣZX as follows

ΣZX =

(
Σ11 Σ12

Σ21 Σ22

)
=

(
Σ11 0
Σ21 Σ22

)
where Σ11 is L1 ×K1, Σ12 is L1 ×K2, Σ21 is L2 ×K1 and Σ22 is L2 ×K2. Note that Σ12 = 0:

Σ12 = E
[
z1ijx

′
2ij

]
= Ej

[
Ei

[
z1ijx

′
2ij

]]
= Ej [Ei [z1ijx2j ]] = Ej [Ei [z1ij ]x2j ] = 0

To simplify the notation we suppress the dependency of W on τ . Note that

Σ′
ZXWΣZX =

(
Σ′
11 Σ′

21

0 Σ′
22

)(
W11 W12

W21 W22

)(
Σ11 0
Σ21 Σ22

)
=

(
A11 +B11 B12

B21 B22

)
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where A11 = Σ′
11W11Σ11, B11 = Σ′

11W12Σ21 + Σ′
21W21Σ11 + Σ′

21W22Σ21, B12 = Σ′
11W12Σ22 +

Σ′
21W22Σ22, B21 = Σ22W21Σ11+Σ22W22Σ21, and B22 = Σ′

22W22Σ22. Note that A11 and B22 are

invertible by Assumptions 5 and the strict positive definiteness of W11 and W22. Note also that

B11 is relatively negligible compared to A11 in the sense that A−1
11 B11 = op(1) By the inverse of

a partitioned matrix, we obtain(
Σ′
ZXWΣZX

−1

=

(
(A11 +B11)

−1 − (A11 +B11)
−1B12

(
B22 −B21(A11 +B11)

−1B12

)−1

−B−1
22 B21(A11 +B11)

−1
(
B22 −B21(A11 +B11)

−1B12

)−1

)
where Σ Similarly,

Σ′
ZXW =

(
Σ′
11W11 +Σ′

21W21 Σ′
11W12 +Σ′

21W22

Σ′
22W21 Σ′

22W22

)
where Σ′

11W11 +Σ′
21W21 = Σ′

11W11 + op(1). Combining these results, we obtain(
Σ′
ZXWΣZX

)−1
Σ′
ZXW =

(
A−1

11 Σ
′
11W11 0

−B−1
22 B21A

−1
11 Σ

′
11W11 +B−1

22 Σ
′
22W21 B−1

22 Σ
′
22W22

)
+ op(1)

All the terms in this matrix are finite. The rest of the proofs follows as in the proof of Theorem

1. ■

Proof of Lemma 2. Part (i)

Lemma 3 in Galvao et al. (2020) provides the uniform Bahadur representation for the

individual-level quantile regression coefficient under our assumptions:

β̂j(τ)− βj(τ) =
1

n

n∑
i=1

ϕj,τ (x̃ij , yij) +R
(1)
nj (τ) +R

(2)
nj (τ), (39)

where

ϕj,τ (x̃ij , yij) = −B−1
j,τ x̃ij(1(yij ≤ x̃ijβj(τ))− τ) (40)

with Bj,τ = E[fy|x(Qy|x(τ |x̃ij)|x̃ij)x̃ij x̃′ij ] and

sup
j

sup
τ∈T

∥∥∥R(2)
nj (τ)

∥∥∥ = Op

(
log n

n

)
(41)

sup
j

sup
τ∈T

∥∥∥E [R(1)
nj (τ)

]∥∥∥ = O

(
log n

n

)
(42)

sup
j

sup
τ∈T

∥∥∥∥E [(R(1)
nj (τ)− E[R(1)

nj (τ)]
)(

R
(1)
nj (τ)− E[R(1)

nj (τ)]
)′]∥∥∥∥ = O

((
log n

n

)3/2
)

(43)

It follows that

1

mn

m∑
j=1

n∑
i=1

zij x̃
′
ij

(
β̂j(τ)− βj(τ)

)
=

1

m

m∑
j=1

(
1

n

n∑
i=1

zij x̃
′
ij

)(
1

n

n∑
i=1

ϕj,τ (x̃ij , yij)

)
(44)

+
1

m

m∑
j=1

(
1

n

n∑
i=1

zij x̃
′
ij

)
R

(1)
nj (τ) (45)

+
1

m

m∑
j=1

(
1

n

n∑
i=1

zij x̃
′
ij

)
R

(2)
nj (τ) (46)
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Consider first the third term (46). By assumptions 2(i) and 5(i), xij and zij are bounded by

C such that the sample mean of their product is also bounded. Therefore, (41) implies that

sup
τ∈T

1

m

m∑
j=1

(
1

n

n∑
i=1

zij x̃
′
ij

)
R

(2)
nj (τ) = Op

(
log n

n

)
(47)

Consider now the second term of (44). Since Var
(
R

(1)
nj (τ)

)
= o

(
1
n

)
by (43), xij and zij

are bounded by assumptions 2(i) and 5(i), and observations are independent across individ-

uals, it follows that Var
(

1
m

∑m
j=1

(
1
n

∑n
i=1 zij x̃

′
ij

)
R

(1)
nj (τ)

)
= op

(
1

mn

)
. In addition, by (42),

sup
j
sup
τ∈T

E
[
R

(1)
nj

]
= O

(
logn
n

)
such that sup

τ∈T
E
[

1
m

∑m
j=1

(
1
n

∑n
i=1 zij x̃

′
ij

)
R

(1)
nj (τ)

]
= O

(
logn
n

)
.

Putting this together, by the Chebyshev inequality and under Assumption 8(c),

sup
τ∈T

1

m

m∑
j=1

(
1

n

n∑
i=1

zij x̃
′
ij

)
R

(1)
nj (τ) = op

(
1√
mn

)
(48)

It follows that both remainder terms are op

(
1√
mn

)
uniformly over τ .

Consider now the term (44). Let ΣZXj = E[zij x̃′ij |vj ], i.e. ΣZXj is the expected value of

zij x̃
′
ij for group j.

1

m

m∑
j=1

(
1

n

n∑
i=1

zij x̃
′
ij

)(
1

n

n∑
i=1

ϕj,τ (x̃ij , yij)

)
=

1

m

m∑
j=1

(
1

n

n∑
i=1

zij x̃
′
ij − ΣZXj

)(
1

n

n∑
i=1

ϕj,τ (x̃ij , yij)

)
+

1

m

m∑
j=1

ΣZXj

(
1

n

n∑
i=1

ϕj,τ (x̃ij , yij)

)
(49)

By the boundedness of zij and xij and the independence of the observations over time, it follows

that
∥∥∥ 1
n

∑n
i=1 zij x̃

′
ij − ΣZXj

∥∥∥ = o(1) uniformly in j. In addition, Var
(
1
n

∑n
i=1 ϕj,τ (x̃ij , yij)

)
=

O
(
1
n

)
. Hence,

Var

 1

m

m∑
j=1

(
1

n

n∑
i=1

zij x̃
′
ij − ΣZXj

)(
1

n

n∑
i=1

ϕi,τ (x̃ij , yij)

) = o

(
1

mn

)

The model in equation (1) and Assumption 5(iv) imply that E [1(yij ≤ x̃ijβj(τ))|x̃ij , zij , vj ] = τ ,

which implies that

E

 1

m

m∑
j=1

(
1

n

n∑
i=1

zij x̃
′
ij − ΣZXj

)(
1

n

n∑
i=1

ϕj,τ (x̃ij , yij)

) = 0

uniformly in τ . Therefore, by Chebyshev inequality,

1

m

m∑
j=1

(
1

n

n∑
i=1

zij x̃
′
ij − ΣZXj

)(
1

n

n∑
i=1

ϕj,τ (x̃ij , yij)

)
= op

(
1√
mn

)
(50)

uniformly in τ .
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Since all other terms are op

(
1√
mn

)
uniformly over τ , the limiting distribution of the process

1
mn

∑m
j=1

∑n
i=1 zij x̃

′
ij

(
β̂j(τ)− βj(τ)

)
is the same as the limiting distribution of

1

m

m∑
j=1

ΣZXj

(
1

n

n∑
i=1

ϕj,τ (x̃ij , yij)

)

=
1

m

m∑
j=1

ΣZXj

(
−B−1

j,τ

n

n∑
i=1

x̃ij(1(yij ≤ x̃ijβj(τ))− τ)

)
:=

1

mn

m∑
j=1

n∑
i=1

sij(τ) (51)

This is a sample mean over mn independent (but not necessarily identically distributed) ob-

servations denoted by sij(τ). The model in equation (1) and Assumption 5(iv) imply that

E [1(yij ≤ x̃ijβj(τ))|x̃ij , zij , vj ] = τ , which implies that E[sij(τ)] = 0. In addition,

Var(sij(τ)) = E[ΣZXj Var(ϕi,τ )Σ
′
ZXj ] = E[ΣZXjB

−1
j,τ τ(1− τ)E[xijx′ij |vj ]B−1

j,τΣ
′
ZXj ] (52)

Pointwise asymptotic normality follows by an application of the Lindeberg CLT.

Next we note that

{
ΣZXj

(
−B−1

j,τ

n

∑n
i=1 x̃ij(1(yij ≤ x̃ijβ)− τ)

)
, τ ∈ T , β ∈ B

}
is a Donsker

class for any compact set B. This follows by noting that {1(yij ≤ x̃ijβj(τ)), τ ∈ T , β ∈ B} is a

VC subgraph class and hence a bounded Donsker class. Hence,{
1

n

n∑
i=1

x̃ij(1(yij ≤ x̃ijβ)− τ), τ ∈ T , β ∈ B

}
is also bounded Donsker with a square-integrable envelope 2 ·maxt∈1,...,T |x̃ij | ≤ 2 ·C. The whole

function is then Donsker by the boundedness of ΣZXj and B−1
j,τ . The weak convergence result

follows by application of the functional central limit theorem for independent but not identically

distributed random variables, see for instance Theorem 3 in Brown (1971).

Part (ii) follows directly by Lemma 3 in Chetverikov et al. (2016).

Part (iii) The first moment is asymptotically equivalent to (up to a term, which is uniformly

op
(

1
mn

)
)

1

m

m∑
j=1

ΣZXj

(
−B−1

j,τ

n

n∑
i=1

x̃ij(1(yij ≤ x̃ijβj(τ))− τ)

)
.

We have already shown that both moments have mean zero. By Assumption 1, the observations

are independent across i and j such that we only need to consider the correlation between both

moments for the same individual and time period.

Cov(x̃ij(1(yij ≤ x̃ijβj(τ))− τ), zijαj(τ
′))

= E[x̃ij(1(yij ≤ x̃ijβj(τ))− τ)z′ijαj(τ
′)]

= E[x̃ijE[(1(yij ≤ x̃ijβj(τ))− τ)|xij , zij , vj ]z′ijαj(τ
′)] = 0

It follows that

sup
τ,τ ′∈T

∥Cov(ḡ(1))mn (δ, τ), ḡ
(2))
mn (δ, τ

′))∥ = op

(
1

mn

)
■
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Proof of Theorem 2. From the definition of the estimator,

δ̂(τ)− δ(τ) =
(
S′
ZXŴSZX

)−1
S′
ZXŴ ḡmn(δ, τ)

As shown in the proof of Theorem 1, SZX → ΣZX . We can partition the matrix ΣZX as follows

ΣZX =

(
Σ11 Σ12

Σ21 Σ22

)
=

(
Σ11 0
Σ21 Σ22

)
where Σ11 is L1 ×K1, Σ12 is L1 ×K2, Σ21 is L2 ×K1 and Σ22 is L2 ×K2. Note that Σ12 = 0:

Σ12 = E
[
z1ijx

′
2ij

]
= Ej

[
Et

[
z1ijx

′
2ij

]]
= Ej [Et [z1ijx2j ]] = Ej [Et [z1ij ]x2j ] = 0

To simplify the notation we suppress the dependency of W on τ in the rest of the proof. Note

that

Σ′
ZXWΣZX =

(
Σ′
11 Σ′

21

0 Σ′
22

)(
W1 0
0 W22

)(
Σ11 0
Σ21 Σ22

)
:=

(
Σ′
11W1Σ11 B12

B21 B22

)
where A11 = Σ′

11W1Σ11, B11 = Σ′
11W11Σ11 + Σ′

11W12Σ21 + Σ′
21W21Σ11 + Σ′

21W22Σ21, B12 =

Σ′
11W12Σ22 + Σ′

21W22Σ22, B21 = Σ22W21Σ11 + Σ22W22Σ21, and B22 = Σ′
22W22Σ22. Note that

A11 and B22 are invertible by Assumptions 5 and the assumption on the weighting matrix. By

the inverse of a partitioned matrix, we obtain

(
Σ′
ZXWΣZX

)−1
=( (

A11T +B11 −B12B
−1
22 B21

)−1 − (A11T +B11)
−1B12

(
B22 −B21(A11T +B11)

−1B12

)−1

−B−1
22 B21(A11n+B11 −B12B

−1
22 B21)

−1
(
B22 −B21(A11T +B11)

−1B12

)−1

)
Similarly,

Σ′
ZXW =

(
Σ′
11W1T +Σ′

11W11 +Σ′
21W21 Σ′

11W12 +Σ′
21W22

Σ′
22W21 Σ′

22W22

)
As T → ∞, applying L’Hospital’s rule for the first column, we obtain(

Σ′
ZXWΣZX

)−1
Σ′
ZXW →

(
A−1

11 Σ
′
11W1 0

−B−1
22 B21A

−1
11 Σ

′
11W1 +B−1

22 Σ
′
22W21 B−1

22 Σ
′
22W22

)
All the terms in this matrix are finite by the invertibility of A11 and B22.

Next, we partition the matrix SZX to separate the z1ij from the z2ij components as well as

the x1ij from the x2ij components:

SZX =

(
S11 S12

S21 S22

)
=

(
S11 0
S21 S22,

)
where S11 is L1 ×K1, S12 is L1 ×K2, S21 is L2 ×K1 and S22 is L2 ×K2. Note that S12 = 0:

S12 =
1

mn

m∑
j=1

n∑
i=1

x2ijz1ij =
1

mn

m∑
j=1

n∑
i=1

x2jz1ij =
1

mn

m∑
j=1

x2j

n∑
i=1

z1ij =
1

m

m∑
j=1

x2j z̄1j = 0.
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This means that the fast moments (individual-level-instruments) cannot identify the coefficients

on the group-level covariates.

It follows that

Λ−1
n S′

ZXŴSZXΛ−1
n =

(
S′
11/

√
T S′

21/
√
T

0 S′
22

)((
Ŵ1T 0
0 0

)
+

(
Ŵ11 Ŵ12

Ŵ21 Ŵ22

))(
S11/

√
T 0

S21/
√
T S22

)
=

(
S′
11Ŵ1S11 0

0 S′
22Ŵ22S22

)
+ op(1).

and

Λ−1
n S′

ZXŴΛ−1
n =

(
S′
11/

√
T S′

21/
√
T

0 S′
22

)((
Ŵ1T 0
0 0

)
+

(
Ŵ11 Ŵ12

Ŵ21 Ŵ22

))(
IL1/

√
T 0

0 IL2

)
=

(
S′
11Ŵ1 0

0 S′
22Ŵ22

)
+ op(1).

Using the results derived in the proof of Proposition 1, we obtain(
Λ−1
n S′

ZXŴSZXΛ−1
n

)−1
Λ−1
n S′

ZXŴΛ−1
n

→
p

(
(Σ′

11W1Σ11)
−1Σ′

11W1 0

0 (Σ′
22W22Σ22)

−1Σ′
22W22

)
= G. (53)

Combining this result and Lemma 2 with Slutzky’s lemma, we obtain

Λmn(δ̂(τ)− δ(τ)) →
d
N(0, GΩG′).

■

B.2.1 Covariance Matrix

Proof of Proposition 1.

V̂ar(
√
m(δ̂ − δ)) =

(
S′
ZXŴSZX

)−1
S′
ZXŴ

 1

mn2

m∑
j=1

Z ′
j ûj û

′
jZj

 ŴSZX

(
S′
ZXŴSZX

)−1

By the proof of Theorem 3 it follows that(
S′
ZXŴ (τ)SZX

)−1
S′
ZXŴ (τ) = G(τ) + op(1).

Consider now the term in the middle and insert ûj = X̃j β̂j−Xj δ̂ = X̃j(β̂j−βj)+Xj(δ−δ̂)+αj ,

to obtain,

1

mn2

m∑
j=1

Z ′
j ûj û

′
jZj =

1

mn2

m∑
j=1

(
Z ′
j

(
X̃j(β̂j − βj) +Xj(δ − δ̂) + αj

)
·
(
X̃j(β̂j − βj) +Xj(δ − δ̂) + αj

)′
Zj

)

=
1

mn2

m∑
j=1

(
Z ′
j

(
X̃j(β̂j − βj)(β̂j − βj)

′X̃ ′
j + αjα

′
j +Xj(δ̂ − δ)(δ̂ − δ)′X ′

j

+Xj(δ − δ̂)(β̂j − βj)
′X̃ ′

j + X̃j(β̂j − βj)(δ − δ̂)′X ′
j

+ αj(β̂j − βj)
′X̃ ′

j + X̃j(β̂j − βj)α
′
j + αj(δ − δ̂)′X ′

j +Xj(δ − δ̂)α′
j

)
Zj

)
.
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Next, we want to show that all but the first two terms converge to zero quickly. We consider

each term separately. Let ζmn(τ) =
1√
mn

+ 1√
m
· ||Vα(τ)||1/2, where Vα(τ) = Var(z̄jαj(τ)). Note

that (δ − δ̂) = Op (ζmn(τ)) and (β̂j − βj) = OP

(
1

n1/2

)
.

Consider the first term. By the proof of Lemma 2(i), it follows that

1

mn2

m∑
j=1

Z ′
jX̃j(β̂j − βj)(β̂j − βj)

′X̃ ′
j =

1

m

m∑
j=1

(
1

n

n∑
i=1

zij x̃
′
ij(β̂j − βj)

)(
1

n

n∑
i=1

zij x̃
′
ij(β̂j − βj)

)′

=E

[(
ΣZXj

1

n

n∑
i=1

ϕi,τ (x̃ij , zij)

)(
ΣZXj

1

n

n∑
i=1

ϕi,τ (x̃ij , zij)

)′]
+ op

(
(mn)−1

)
=
Ω1

n
+ op

(
(mn)−1

)
.

For the second term, we have

1

m

m∑
j=1

z̄j z̄
′
jα

2
j = Var(z̄jαj) +Op

(
Var(z̄jαj)√

m

)
= Ω2 +Op

(
1√
m

)
· ||Vα||,

where the first equality is follows by the central limit theorem,

√
m

1

m

m∑
j=1

[
Var(z̄jαj)

−1z̄j z̄
′
jαj − 1

]
= Op(1),

which implies that 1
m

∑m
j=1 z̄j z̄

′
jαj −Var(z̄jαj) = Op

(
Var(z̄jαj)√

m

)
.

Consider now the third term. We have that

1

mn2

m∑
j=1

Z ′
jXj(δ̂ − δ)(δ̂ − δ)′X ′

jZj =
1

m

m∑
j=1

(
1

n

n∑
i=1

zijx
′
ij

)
(δ̂ − δ)(δ̂ − δ)′

(
1

n

n∑
i=1

xijz
′
ij

)
=Op(ζ

2
mn).

The fifth term is just the transpose of the fourth term. Thus we will consider only the fourth

one.

For the sixth (and seventh) term(s), we have that

1

mn2

m∑
j=1

Z ′
jαj(β̂j − βj)

′X̃ ′
jZj =

1

m

m∑
j=1

z̄jαj(β̂j − βj)
′

(
1

n

n∑
i=1

x̃ijz
′
ij

)
= Op

(
ζmn · n−1/2

)
.

Finally, for the eighth (and ninth) term(s), it follows that

1

mn2

m∑
j=1

Z ′
jαj(δ − δ̂)′X ′

jZj =
1

mn2

m∑
j=1

z̄jαj(δ − δ̂)′

(
1

n

n∑
i=1

xijz
′
ij

)
= Op

(
ζ2mn

)
.
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Hence,  1

mn2

m∑
j=1

Z ′
j ûj û

′
jZj

 =
Ω1

n
+Ω2 +Op(ζ

2
mn + ζmnn

−1/2),

and the final result follows directly by the continuous mapping theorem. ■

B.2.2 Overidentification Test

Proof of Proposition 2. First, we want to rewrite the J-statistics, in a way that accounts for the

different convergence rates of the moments conditions:

J(δ̂) = mḡmn(δ̂)
′Ŝ−1ḡmn(δ̂)

= m
(
Λmnḡmn(δ̂)

)′
Λ−1
mnŜ

−1Λ−1
mnΛmnḡm(δ̂)

=
(
Λmnḡmn(δ̂)

)′
Λ−1
n Ŝ−1Λ−1

n Λmnḡmn(δ̂).

=
(
Λmnḡmn(δ̂)

)′
Ω̂−1Λmnḡmn(δ̂).

where
√
mΛn = Λmn and Ω̂−1 =

(
ΛnŜΛn

)−1
.

Second, we want to show that ḡmn(δ̂) = B̂
(
ḡmn(δ) +

1
m

∑m
j=1

1
n

∑n
i=1 zij x̃

′
ij(β̂j − βj)

)
. Recall

that Ŷj = Xjδ + αj + X̃j(β̂j − βj). Hence, we can write

Z ′
j Ŷj = Z ′

jXjδ + Z ′
jαj + Z ′

jX̃j(β̂j − β)

SZŶ = SZXδ +
1

m

m∑
j=1

1

n

n∑
i=1

zijαj +
1

m

m∑
j=1

1

n

n∑
i=1

zij x̃
′
ij(β̂j − βj)

SZŶ = SZXδ + ḡmn(δ).

Then, note that

ḡmn(δ̂) =
1

m

m∑
j=1

1

n

n∑
i=1

zij(ŷij − x′ij δ̂)

= SZŶ − SZX δ̂

= SZŶ − SZX

(
SZX Ŝ−1SZX

)−1
SZX Ŝ−1SZŶ = B̂SZŶ ,

where B̂ =

(
IL − SZX

(
S′
ZX Ŝ−1SZX

)−1
S′
ZX Ŝ−1

)
.

Thus,

ḡmn(δ̂) = B̂SZŶ

=

(
IL − SZX

(
S′
ZX Ŝ−1SZX

)−1
S′
ZX Ŝ−1

)
(SZXδ + ḡmn(δ))

= B̂ḡmn(δ).
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Since Ω is positive definite there exist a matrix C such that Ω̂−1 = C ′C.

We define A ≡ CΛnS
′
ZX and M ≡ IL −A(A′A)−1A′.

In this third part, we show that

B̂′ΛmnΩ̂
−1ΛmnB̂ = ΛmnC

′MCΛmn.

Note that

CΛmnB̂ = CΛmn

(
IL − SZX

(
S′
ZX Ŝ−1SZX

)−1
S′
ZX Ŝ−1

)
=

(
CΛmn − CΛmnSZX

(
S′
ZX Ŝ−1SZX

)−1
S′
ZX Ŝ−1

)
=
(
CΛmn − CΛmnSZX

(
S′
ZXΛnC

′CΛnSZX

)−1
S′
ZXΛnC

′CΛn

)
=
(
CΛmn − CΛnSZX

(
S′
ZXΛnC

′CΛnSZX

)−1
S′
ZXΛnC

′CΛmn

)
=
(
IL −A

(
A′A

)−1
A′
)
CΛmn

= MCΛmn.

Where the third line uses Ω̂−1 = Λ−1
n Ŝ−1Λ−1

n = C ′C. The fourth line follows because Λmn =
√
mΛn. In the last two lines, we use the definitions of A and M .

M is symmetric and idempotent. Thus

B̂′ΛmnΩ̂
−1ΛmnB̂ = B̂′ΛmnC

′CΛmnB̂

= (CΛmnB̂)′CΛmnB̂

= (MCΛmn)
′MCΛmn

= ΛmnC
′MCΛmn.

The rank of M is the trace of M , which is L−K.

Since Ω = ΛnSΛn is positive definite, there exist a matrix Q such that

Q′Q = Ω−1

and the probability limit of C is Q. We define v ≡ CΛmnḡmn(δ).

It follows that

Λmnḡmn(δ)
d−→ N

((
0
0

)
,

(
Ω11 0
0 Ω22

))
∼ N(0,Ω).

Thus it follows directly that

v
d−→ N(0, QΩQ′) = N(0, Q(Q′Q)−1Q′) = N(0, IL).
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Now we can come back to our test statistic:

J(δ̂) = Nḡmn(δ̂)
′Ŝ−1ḡmn(δ̂)

=
(
Λmnḡmn(δ̂)

)′
Ω̂−1Λ−1

n ḡmn(δ̂)

=
(
ΛmnB̂ḡm(δ)

)′
Ω̂−1Λmn

(
B̂ḡmn(δ)

)
= ḡmn(δ)

′B̂′ΛmnΩ̂
−1ΛmnB̂ḡmn(δ)

= ḡmn(δ)
′ΛmnC

′MCΛmnḡmn(δ)

= [CΛmnḡmn(δ)]
′M [CΛmnḡmn(δ)] .

Since M is idempotent with rank L, it follows that

J(δ̂)
d−→ χ2

L−K .

■

C Optimal Instruments and Minimum Distance

In this section, we show that if αj(τ) = 0 for all j and τ , efficient minimum distance can be

implemented by optimal instruments. From equation (33) we have that if αj(τ) = 0 for all j

and all τ , E[(X̃j β̂j(τ)−Xjδ(τ))(X̃j β̂j(τ)−Xjδ(τ))
′|Xj ] = X̃j

Vj(τ)
n X̃ ′

j . This implies the optimal

instrument Z∗
j = (X̃j

Vj(τ)
n X̃ ′

j)
+Xj . Since n is a scalar, using Z∗

j (τ) = (X̃jVj(τ)X̃
′
j)

+Xj leads to

the same results.

Proposition 6. The IV regression with instrument Z∗
j (τ) = (X̃jVj(τ)X̃

′
j)

+Xj is the efficient

MD estimator.

Proof.

δ̂EMD(τ) =

 m∑
j=1

R′
j V̂

−1
j (τ)Rj

−1 m∑
j=1

R′
j V̂

−1
j (τ)β̂j(τ)


=

 m∑
j=1

X ′
jX̃j

(
X̃ ′

jX̃j V̂j(τ)X̃
′
jX̃j

)−1
X̃ ′

jXj

−1(
X ′

jX̃j

(
X̃ ′

jX̃j V̂j(τ)X̃
′
jX̃j

)−1
X̃ ′

j Ŷj(τ)

)

=

 m∑
j=1

X ′
j

(
X̃j V̂j(τ)X̃

′
j

)+
Xj

−1(
X ′

j

(
X̃j V̂j(τ)X̃

′
j

)+
Ŷj(τ)

)
= δ̂Oj(τ).

The second line follows by the relationship between X̃j and Xj , that is X̃jRj = Xj and the

third line follows since for a full column rank matrix X̃j , X̃
+
j = (X̃ ′

jX̃j)
−1X̃ ′

j . ■
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